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Introduction
Example 1: Periodic function

Let z(t) be a bounded periodic function with period τ1.

Then I{z(t)≤ξ0} is periodic with the same period τ1 for any ξ0 ∈ R.

Let γ1
∆
= τ−1

1 (fundamental frequency) and Λ1
∆
= γ1Z.

aλz
∆
=
〈
z(t) e−j2πλt

〉
t

∆
= lim

T→∞

1

2T

∫ T

−T
z(t) e−j2πλt dt, λ ∈ R.

Then aλz = 0 if λ /∈ Λ1 and

aλz =
1

τ1

∫ τ1

0

z(t) e−j2πλt dt if λ ∈ Λ1.

The set of frequencies of z(t) is defined by Γz
∆
= {λ ∈ R : aλz 6= 0} ⊂ Λ1.

Then ΓI{z(t)≤ξ0}
⊂ Λ1.

Question : Link between ΓI{z(t)≤ξ0}
and Γz ? -2-
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z(t) = cos(2πt)

abs fft cos(2πt) abs fft I{cos(2πt)≤0}
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abs fft I{cos(2πt)≤0.5} abs fft I{cos(2πt)≤0.7}
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abs fft I{cos(2πt)≤ξ}
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Apparition of new harmonics for the indicator function :

γk = k, k ∈ Z !
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abs fft I{cos(2πt)≤ξ} λ 6= 0
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Example 2: Poly-periodic function

Let z(t) = zτ1 (t) + zτ2 (t)

where zτi (t) bounded periodic function with period τi , i = 1, 2.

τ1 > 0 and τ2 > 0 uncommensurable: τ1

τ2
/∈ Q (not rational).

What kind of almost-periodicity does I{z(t)≤ξ} inherit ?

-8-
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z(t) = cos(2πt)− 2 cos(2
√
2πt)
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Apparition of new harmonics:

γ
(1)
k = k and γ

(2)
k = k

√
2

and also of correlation between the frequencies :

γk1,k2 = k1 + k2

√
2, k1, k2 ∈ Z !
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abs fft I{cos(2πt)−2 cos(2
√

2πt)≤ξ} (λ 6= 0)
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Plan

I – Almost periodicity (a.p.)
– Uniform (u.a.p.) – Stepanov (S-a.p.) – Besicovitch (B-a.p.)

I I – Indicator of an almost periodic function

I I I – Frequency extraction from the distribution function
– FOT distribution – Cyclic FOT-measure
– Gardner fundamental theorem on sines-wave extraction

I V – B-a.p.-in-distribution function

V – Almost periodic extraction

V I – Extraction of periodic components

Besicovitch (1932): almost periodic functions in the sense of Bohr (uniform),
Stepanoff, Weyl, and Besicovitch.
From M. Kac & H. Steinhaus (1937), M. Steinhaus (1940), notion of ”relative
distribution” reconsidered by W. Gardner (1987), J. Leśkow & A. Napolitano
(2006): (with the notion of FOT-distribution)
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I – Almost periodicity (a.p.)

– Uniform norm: U : NU (z) = ‖z‖∞
∆
= supt |z(t)| <∞;

– Stepanov Sp
T -norm:

NSp
T

(z) = ‖z‖Sp
T

∆
= sup

to

[
1

T

∫ to+T

to

|z(t)|p dt

]1/p

;

– Besicovitch Bp-seminorm:

NBp (z)
∆
= lim sup

T→∞

[
1

2T

∫ +T

−T
|z(t)|p dt

]1/p

.

Besicovitch (1932): almost periodic functions in the sense of Bohr (uniform),
of Stepanoff, of Weyl, and of Besicovitch.
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Identification – Point separation property

(i) Nu[z ] = 0⇔
(
z(t) = 0 for any t

)
.

(ii) NSp
T

[z ] = 0⇔
(
z(t) = 0 for Leb-almost every t

)
.

(iii) NBp [z ] = 0 : We can have Leb{t ∈ R : z(t) 6= 0} =∞.

Examples: (1 + |t|)−a with a > 0, e−|t|,. . .

bounded relatively measurable z(t) with Dirac FOT-distribution.

Some comparison properties

(i) (1 + T )−1NSp
1
≤ NSp

T
≤
(
1 + T−1

)
NSp

1
. Notation : Sp ∆

= Sp
1

(ii) NBp ≤ NSp
T
≤ NU .

(iii) NSq ≤ NSp and NBq ≤ NBp for 1 ≤ q < p.

-14-
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Almost periodic functions

Let T be the set of trigonometric polynomials.

– {u.a.p} ∆
= CU (T ) (closure of T by the norm NU ):

– {Sp-a.p.} ∆
= CSp (T ) (closure of T by the norm NSp );

– {Bp-a.p.} ∆
= CBp (T ) (closure of T by the semi-norm NBp ).

Properties Here G = S or B.

(i) If zn(t) G p-a.p. and NG p (zn − z)→ 0, then z(t) G p-a.p.

(ii) If z(t) u.a.p. then z(t) bounded and uniformly continuous.

(iii) If z(t) G p-a.p. then NG p [z ] <∞.

(iv) {u.a.p.} ⊂ {Sp-a.p.} ⊂ {Bp-a.p.}.

(v) {G p-a.p.} ⊂ {G q-a.p.} ⊂ {G 1-a.p.} for any 1 ≤ q < p.

-15-
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Fourier analysis

Let z(t) be G p-a.p. Then

(i) The mean azλ
∆
=
〈
z(t) e−j2πλt

〉
t

exists for any λ ∈ R.

(ii) If azλ = 0 for any λ ∈ R, then NG p [z ] = 0.

(iii) Let Γz
∆
=
{
γ ∈ R : azγ 6= 0

}
and

Λz
∆
=
{ n∑

i=1

niγi : n ∈ N, ni ∈ Z, γi ∈ Γz , i = 1, . . . , n
}
.

Then the sets Γz ⊂ Λz are at most countable.

(iv) Bochner–Fejér polynomial σz
B(t) associated to a.p. z(t):

σz
B(t) =

∑
γ∈Γz∩B

αz
B,γa

z
γ e

j2πγt ,

where 0 ≤ αz
B,γ ≤ 1 and B ⊂ R finite.

-16-
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(v) Γσz
B
⊂ Γz and Γ(σz

B )k ⊂ Λz for any k ≥ 1.

(vi) NG p

[
σz
Bn
− z
]
−→ 0 for any Bn ↑ Γz as n→∞.

(vii) Parseval equality:

If z(t) B2-a.p. then
〈
|z(t)|2

〉
t

=
∑
γ∈Γz

|azγ |2 <∞.

(viii) Riesz–Fisher theorem:

For every series
∑

n an e
j2πγnt such that

∑
n |an|2 <∞,

there exists a B2-a.p. z(t) having this series as its Fourier series.

Remark: z1(t) = cos(t) and z2(t) = z1(t) + (1 + |t|)−1.

NB2 [z1 − z2] = 0 and z1(t) 6= z2(t) for any t ∈ R.

-17-
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Properties

(i) If z1(t) and z2(t) bounded G 1-a.p., then z1(t) · z2(t) G 1-a.p.

Moreover Γz1·z2 ⊂ Γz1 + Γz2

∆
=
{
γ1 + γ2 : γ2 ∈ Γz1 , γ2 ∈ Γz2

}
.

(ii) If z(t) bounded G 1-a.p., then z(t)k G p-a.p. for any p ≥ 1 and

any integer k ≥ 1. Moreover Γzk ⊂ Λz .

(iii) If z(t) bounded and G 1-a.p., and g(x) continuous on R

then goz : t 7→ g(z(t)) is G p-a.p. for any p ≥ 1.

Moreover Γgoz ⊂ Λz .

These facts are well known for u.a.p. functions.

-18-
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Convergence of the trigonometric series

If z(t) is B2-a.p. Then
〈
|z(t)|2

〉
t

=
∑
λ

∣∣aλz ∣∣2 <∞ (Parseval).

What can we say conversely ?

Consider a trigonometric series Σ(t) ∼
∑

n an e
j2πγnt

(i) B2-a.p.: If
∑

n |an|2 <∞ (Riesz–Fisher)

then there exists B2-a.p. z(t) with Fourier series Σ(t).

This does not mean that series Σ(t) is convergent for NB2 .

But sequences of Bochner–Fisher polyn. {σz
Bn

(t)} converge

to z(t) for NB2 (asymptotic). Also to z(t) + 1/(1 + |t|).

(ii) u.a.p: If
∑

n |an| <∞ then Σ(t) converges for any t, and is u.a.p.

(iii) S2-a.p: if
∑

n |an|2 <∞ and
∑∑

m 6=n |an am|
| sin(π(γn−γm))|
|γn−γm| <∞,

then Σ(t) converges in S2, and is S2-a.p.

-19-
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I I – Indicator of an almost periodic function

Relatively measurable function - FOT-distribution

Let z(t) be a relatively measurable (RM) function

and Fz(ξ) be its Fraction-Of-Time-distribution (FOT-distrib.).

Fz(ξ)
∆
=
〈
I{z(t)≤ξ}

〉
t

= lim
T→∞

1

2T

∫ T

−T
I{z(t)≤ξ}dt.

Wintner 1932: If z(t) continuous bounded and
〈
x(t)p

〉
t

exists for any
p ≥ 1 then z(t) RM and

〈
x(t)p

〉
t

=

∫
R
ξpdF (ξ).

Hence, any u.a.p. function is RM.
As well as, any S1-a.p. or B1-a.p. bounded continuous function. -20-
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FOT distribution of cos(2πt) : Fcos(2πt)(ξ)
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Bp-approximation of indicator function (Technical result)

For each ε > 0, let gε(x) such that supx

∣∣I{x≥0} − gε(x)
∣∣ ≤ 1

lim
ε→0

gε(x) = I{x≥0} and lim
ε→0

sup
|x|>ε

∣∣I{x≥0} − gε(x)
∣∣ = 0.

Let z(t) RM function and 0 continuity point of Fz(ξ).

Then NBp

[
I{z(t)≥0} − gεn(z(t)

]
→ 0

for p ≥ 1 and for εn → 0 of continuity points of Fz(ξ).

Remarks:

– Recall that NBp (z)
∆
= lim supT→∞

[
1

2T

∫ T

−T
|z(t)|p dt

]1/p

.

– Technical problem with other norms NU and NSp .

-22-
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Bp-a.p. indicator function

If z(t) bounded, RM and B1-a.p.

Then I{z(t)≤ξo} Bp-a.p. for any p ≥ 1, and ΓI{z(t)≤ξo}
⊂ Λz

for any continuity point ξo of the FOT-distribution Fz(ξ).

Remarks:

(i) Same property for I{z(t)<ξo}, I{z(t)≥ξo}and I{z(t)>ξo}.

(ii) If z(t) B1-a.p. bounded then I{z(t)≤ξo} B
1-a.p. for any ξo /∈ Ξz

where Ξz at most countable.

(iii) We can also consider unbounded B1-a.p. z(t). Unfortunately we do
not get the inclusion between ΓI{z(t)≤ξo}

and Λz .

(iv) For a S1-a.p. function we cannot conclude that I{z(t)≤ξo} is S1-a.p.
for all points ξ ∈ R except an at most countable subset.
But only for some points.

-23-
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I I I – Frequency extraction
Cyclic FOT-measure

Let Λ ⊂ R such that: if λ ∈ Λ then kλ ∈ Λ for any k ∈ Z.

Definition z(t) ∈ Z̃(Λ)
b :

sup
t
|z(t)| <∞ and Fλz (ξ)

∆
=
〈
I{z(t)≤ξ}e

−j2πλt〉
t

exists

for any λ ∈ Λ and ξ ∈ R \ Ξz where Ξz ⊂ R is at most countable.

Then

(i) z(t) RM, Fz(ξ)
∆
= F 0

z (ξ) FOT-distribution of z(t).

(ii) For λ ∈ Λ, ξ ∈ R \ Ξz ,

Fλz (ξ) ∈ C, F−λz (ξ) = Fλz (ξ) and
∣∣Fλz (ξ)

∣∣ ≤ Fz(ξ) ≤ 1,

Fλz (−∞) = 0 for any λ, and Fλz (∞) = 0 for any λ 6= 0.

(iii)
∣∣Fλz (ξ2)− Fλz (ξ1)

∣∣ ≤ Fz(ξ2)− Fz(ξ1) for ξ1 ≤ ξ2 in R \ Ξz .

Recall Fz (−ξ) non-decreasing and (since supt |z(t)| <∞)
Fz (−ξ) −→ Fz (−∞) = 0 Fz (ξ) −→ Fz (∞) = 1 as ξ →∞ . -24-



Introduction A.P. funct. Indic. Freq. extract. A.P. distrib. A.P. extract. Per. extract. Simulation

abs fft I{cos(2πt)−2 cos(2
√

2πt)≤ξ} λ 6= 0, maxξ abs fft
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abs fft I{cos(2πt)−2 cos(2
√

2πt)≤ξ} λ 6= 0 zoom
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abs fft I{cos(2πt)−2 cos(2
√

2πt)≤ξ}

λ = 0 λ =
√

2− 1 ≈ 0.4 λ = 1

-27-
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abs fft I{cos(2πt)−2 cos(2
√

2πt)≤ξ}

λ =
√

2 ≈ 1.4 λ = 2
√

2− 1 ≈ 1.8 λ =
√

2 + 1 ≈ 2, 4

-28-
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λ = 2
√

2 ≈ 2.8 λ = 2
√

2 + 1 ≈ 3.8

-29-
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Let z(t) ∈ Z̃(Λ)
b and λ ∈ Λ. We have seen that∣∣Fλz (ξ2)− Fλz (ξ1)

∣∣ ≤ Fz(ξ2)− Fz(ξ1) for ξ1 ≤ ξ2 in R \ Ξz .

The increments of Fλz (ξ) are dominated

by the increments of the FOT-distribution Fz(ξ) of z(t).

Hence ξ 7→ Fλz (ξ) is of bounded variation in R and is continuous at any
point of continuity of the FOT-distribution Fz(ξ).

Definition

The function Fλz (ξ) will be called cyclic FOT-measure at frequency λ of
the function z(t).

Stieltjes integral
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Fundamental theorem on sines-wave extraction (W. Gardner)

Let z(t) ∈ Z̃(Λ)
b and g(ξ) be a function which is

(1) either continuous,

(2) or bounded, monotonic and
∫
R |g(ξ)|dFz(ξ) exists.

Then

〈
g(z(t)) e−j2πλt

〉
t

∆
= lim

T→∞

1

2T

∫ T+to

to−T
g(z(t)) e−j2πλt dt

exists independently of to ∈ R, and〈
g(z(t)) e−j2πλt

〉
t

=

∫
R
g(ξ) dFλz (ξ),

for any λ ∈ Λ.

Hence, for every λ ∈ Λ and integer k ≥ 1,〈
z(t)ke−j2πλt

〉
t

=

∫
R
ξk dFλz (ξ).
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I V – B-a.p.-in-distribution function
Definition

z(t) ∈ Z̃ap
b : z(t) bounded and B1-a.p. in distribution:

I{z(t)≤ξ} is B1-a.p. for any ξ ∈ R \ Ξz , where Ξz ⊂ R at most countable.

Then

(i) z(t) ∈ Z̃(R)
b , Fλz (ξ)

∆
=
〈
I{z(t)≤ξ} e

j2πλt
〉
t

and

Γ̃z,ξ
∆
=
{
λ ∈ R : Fλz (ξ) 6= 0

}
at most countable for any ξ /∈ Ξz .

Let Γ̃z
∆
=
⋃
ξ/∈Ξz

Γ̃z,ξ.

(ii) Furthermore

aλz
∆
=
〈
z(t)e−j2πλt

〉
t

=

∫
R
ξ dFλz (ξ)

is well-defined for any λ ∈ R.

(iii) Hence z(t) ∈ Z(R)
b and Γz ⊂ Γ̃z .
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(iv) Parseval equality :

Fz(ξ) =
〈(

I{z(t)≤ξ}
)2
〉
t

=
∑
λ∈Γ̃z

∣∣Fλz (ξ)
∣∣2 ≤ 1.

Hence∑
λ∈Γ̃z\{0}

∣∣Fλz (ξ)
∣∣2 = Fz(ξ)

(
1−Fz(ξ)

)
≤ min

{
1/4 , Fz(ξ) , 1−Fz(ξ)

}
.

As result

– If Fλz (ξ) = 0 for any λ 6= 0 then Fz(ξ) = 0 or 1.

– If Γ̃z = {0} then there exists ξo ∈ R such that NB [z(t)− ξo ] = 0.
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(v) For the increments (Parseval equality):∑
λ∈Γ̃z

∣∣Fλz (ξ2)− Fλz (ξ1)
∣∣2 =

〈
I{ξ1<z(t)≤ξ2}

〉
t

= Fz(ξ2)− Fz(ξ1) ≤ 1

and∑
λ∈Γ̃z\{0}

∣∣Fλz (ξ2)− Fλz (ξ1)
∣∣2 =

(
Fz(ξ2)− Fz(ξ1)

)(
1− Fz(ξ2) + Fz(ξ1)

)
≤ min{1/4 ,

(
Fz(ξ2)− Fz(ξ1)

)
,
(
1− Fz(ξ2) + Fz(ξ1)

)
}

for ξ1 ≤ ξ2 in R \ Ξz .

(v) However when z(t) ∈ Z̃ap
b we do not know whether z(t) is B-a.p.

Even when
∑
λ

∣∣aλz ∣∣2 <∞ we do not now whether z(t) is B2-a.p.
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Case of a bounded and B-a.p. function

Let z(t) bounded and B1-a.p.

Then z(t) B2-a.p. and
∑
λ

∣∣aλz ∣∣2 <∞.

Moreover z(t) ∈ Z̃ap
b ⊂ Z̃(R) and Γ̃z ⊂ Λz .

Recall Λz
∆
=
{∑n

i=1 niγi : n ∈ N, ni ∈ Z, γi ∈ Γz , i = 1, . . . , n
}
.

The previous results are valid.
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V–Almost periodic extraction

We consider two ways to extract an almost periodic part of a signal.

– The first one is directly characterized by the Fourier (or cyclic)
coefficients of the signal (the almost periodic additive component).
It fits very well for linear analysis.

– The second one is defined from the cyclic FOT measures (the
almost periodic FOT-distribution component). It can be applied for
non linear analysis following Gardner fundamental theorem of
sines-wave extraction.

Unfortunately the relationships between these two notions are not
satisfactory. Then we illustrate this problem in the case of the periodic
extraction.
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Almost periodic additive component

Let z(t) ∈ Z(Λ), that is, aλz
∆
=
〈
z(t)e−j2πλt

〉
t

defined for λ ∈ Λ.

Assume that ∑
λ∈Λ

∣∣aλz ∣∣2 <∞.
Then there exists a (not unique) B2-a.p. function zΛ(t) with

zΛ(t) ∼
∑
λ∈Λ

aλz e
j2πλt (Riesz–Fisher theorem)

Hence aλzΛ

∆
=
〈
zΛ(t) e−j2πλt

〉
t

= aλz forλ ∈ Λ

and aλzΛ
= 0 for λ ∈ R \ Λ.

Moreover 〈∣∣zΛ(t)
∣∣2〉

t
=
∑
λ∈Λ

∣∣aλz ∣∣2 (Parseval inequality).
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Define the residual zΛ,r (t)
∆
= z(t)− zΛ(t).

Then
〈
zΛ,r (t)e−j2πλt

〉
t

= 0 for any λ ∈ Λ.

and
〈
zΛ,r (t) zΛ(t)∗

〉
t

= 0 when either (i) z(t) and zΛ(t) bounded,

or (ii) 〈z(t)2〉t exists and is finite.

In the case (ii) we obtain that

〈|zΛ,r (t)|2〉t = 〈|z(t)|2〉t − 〈|zΛ(t)|2〉t .

Notice that zΛ(t) is real-valued if Λ = −Λ.

∗ If
∑
λ∈Λ

∣∣aλz ∣∣ <∞ then zΛ(t) is uniformly almost periodic (u.a.p.)

zΛ(t) =
∑
λ∈Λ

aλz e
j2πλt .

The sum is uniform with respect to t ∈ R;

and zΛ(t) continuous bounded.
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Almost periodic-distribution component

Let z(t) ∈ Z̃(Λ) and Λ ⊂ R stable by integer multiplication.

Then cyclic FOT-measure Fλz (ξ)
∆
=
〈
I{z(t)≤ξ} e

−j2πλt〉
t

for λ ∈ Λ.

If in addition
∑
λ∈Λ

∣∣Fλz (ξ)
∣∣2 <∞ for ξ ∈ R \ Ξz ,

then there exists B2-a.p. t 7→ Φ
(Λ)
z (t, ξ) ∈ R with

Φ(Λ)
z (t, ξ) ∼

∑
λ∈Λ

Fλz (ξ) e j2πλt (Riesz–Fisher theorem)

and 〈
Φ(Λ)

z (t, ξ)2
〉
t

=
∑
λ∈Λ

∣∣Fλz (ξ)
∣∣2 (Parseval equality).
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Let the residual R
(Λ)
z (t, ξ)

∆
= I{z(t)≤ξ} − Φ

(Λ)
z (t, ξ).

Then
〈
R

(Λ)
z (t, ξ) e−j2πλt

〉
t

= 0 for any λ ∈ Λ,〈
RΛ
z (t, ξ) Φ(Λ)(t, ξ)

〉
t

= 0

and 〈
R

(Λ)
z (t, ξ)2

〉
t

= Fz(ξ)−
〈
Φ

(Λ)
z (t, ξ)2

〉
t
.
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If z(t) ∈ Z̃(Λ) and bounded

then z(t) ∈ Z(Λ) and aλz
∆
=
〈
z(t)e−j2πλt

〉
t

=

∫
R
ξ dFλz (ξ).

(i) If in addition
∑
λ∈Λ

∣∣aλz ∣∣2 <∞ then there exits a B2-a.p. zΛ(t)

zΛ(t) ∼
∑
λ∈Λ

aλz e
j2πλt .

Moreover ΓzΛ
⊂ Λ, aλzΛ

= 0 for λ /∈ Λ and

aλzΛ
= aλz =

∫
R
ξ dFλz (ξ) for λ ∈ Λ.

(ii) Let zΛ,r (t)
∆
= z(t)− zΛ(t).

Then
〈
zΛ,r (t)e−j2πλt

〉
t

= 0 for any λ ∈ Λ.
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(iii) If we also assume that the B2-a.p. function zΛ(t) is bounded,

then zΛ(t) ∈ Z̃(ΛzΛ
).

Furthermore aλzΛ
= 0 for λ /∈ Λ and

aλzΛ
= aλz =

∫
R
ξ dFλz (ξ) =

∫
R
ξ dFλzΛ

(ξ) for λ ∈ Λ.

Question: What is the link between FλzΛ
(ξ) and Fλz (ξ) ?
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V I I – Extraction of periodic components

Periodic additif component of a signal

Definition Let τ1 > 0 fixed, γ1
∆
= τ−1

1 and Λ1
∆
= γ1Z.

z(t) ∈ Z{τ1}
b : z(t) bounded and synchronized average

zτ1 (t)
∆
= E{τ1}{z(t)} ∆

= lim
N→∞

1

2N

N−1∑
n=−N

z(t + nτ1) =
〈
z(t + nτ1)

〉
n

exists for any t ∈ R ⊂ R where Leb[R \ R] = 0.

Then zτ1 periodic bounded and zτ1 (t) ∈ Z(γ1Z).

Moreover aλzτ1
= 0 for λ /∈ γ1Z and

akγ1
zτ1

∆
=
〈
zτ1 (t)e−j2πkγ1t

〉
t

=
1

τ1

∫ τ1

0

zτ1 (t)e−j2πkγ1t dt.
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Let z(t) ∈ Z{τ1}
b ∩ Z(γ1Z)

b .

Periodic extraction: z(t) = zτ1 (t) + zτ1,r (t).

Then residual zτ1,r (t)
∆
= z(t)− zτ1 (t) ∈ Z(γ1Z)

b and

〈z(t)e−j2πkγ1t〉t = 〈zτ1 (t)e−j2πkγ1t〉t ,

〈zτ1,r (t)e−j2πkγ1t〉t = 0 for k ∈ Z.

that is
akγ1
z = akγ1

zτ1
and akγ1

zτ1,r
= 0.

If λ /∈ γ1Z and aλz
∆
= 〈z(t)e−j2πλt〉t exists then

〈z(t)e−j2πλt〉t = 〈zτ1,r (t)e−j2πλt〉t and 〈zτ1 (t)e−j2πλt〉t = 0

that is
aλz = aλzτ1,r

and aλzτ1
= 0.
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“Conversely” : If z(t) ∈ Z(γ1Z)
b , have we z(t) ∈ Zτ1

b ?
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Periodic distribution component of a signal

Definition Let τ1 > 0 fixed, γ1
∆
= τ−1

1 and Λ1 = γ1Z.

z(t) ∈ Z̃{τ1} : synchronized average

Φ{τ1}
z (t, ξ)

∆
= E{τ1}

{
I{z(t)≤ξ}

}
= lim

N→∞

1

2N + 1

N∑
n=−N

I{z(t+nτ1)≤ξ},

exists for any t ∈ R ⊂ R and any ξ ∈ R \ Ξ.

where Leb(R \ R) = 0 and the set Ξ ⊂ R is at most a countable set.

(Napolitano 2020, Definition 2.20 (p.46)).

For simplicity of presentation, put Φ
{τ1}
z (t, ξ)

∆
= 0 for t ∈ R \ R.
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We readily obtain that z(t) is RM. Moreover

(i) ξ 7→ Φ
{τ1}
z (t, ξ) is a FOT-distribution for t ∈ R.

(ii) t 7→ Φ
{τ1}
z (t, ξ) periodic and 0 ≤ Φ

{τ1}
z (t, ξ) ≤ 1. for ξ ∈ R \ Ξ.

(iii) Define

F {τ1}
z (λ, ξ)

∆
=
〈

Φ{τ1}
z (t, ξ) e−j2πλt

〉
t

for λ ∈ R.

Then F
{τ1}
z (λ, ξ) = 0 for λ /∈ γ1Z and

F {τ1}
z (λ, ξ) =

1

τ1

∫ τ1

0

Φ{τ1}
z (t, ξ) e−j2πkγ1t dt if k ∈ Z.

(iv) Z̃{τ1} ⊂ Z̃(γ1Z) and

F {τ1}
z (λ, ξ) =

〈
I{z(t)≤ξ}e

−j2πλt〉
t

∆
= Fλz (ξ) for λ ∈ γ1Z.

Notice F
{τ1}
z (0, ξ) = Fz(ξ).
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Extraction of a finite number of periodic components

τ1 > 0 and τ2 > 0 non commensurable : τ1

τ2
irrational.

Λ = γ1Z ∪ γ2Z.

(i) Additif component of a signal

z12(t)
∆
= zτ1 (t) + zτ2 (t)− 〈z(t)〉t .

Recall
〈
z(t)

〉
t

=
〈
zτ1 (t)

〉
t

=
〈
zτ2 (t)

〉
t
.

(ii) Distribution component of a signal

Φ12
z (t, ξ)

∆
= Φτ1

z (t, ξ) + Φτ2
z (t, ξ)− Fz(ξ).

Recall Fz(ξ)
∆
=
〈
I{z(t)≤ξ}

〉
t

=
〈
Φτ1

z (t, ξ)
〉
t

=
〈
Φτ2

z (t, ξ)
〉
t
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Simulation:

ap-add.extract. cos(2πt)− cos(2
√
2πt) + cos(2t)
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