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Abstract

Main goals of the talk:

Review recent ideas on functional data analysis (FDA)

Implementation of FDA in the context of PC/APC signals

FDA language and estimation for PC/APC.
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Figure: Data organized into segments
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The segments usually come out of this.
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De�nition of APC

We say that {X (t) ; t ∈ Z} - APC, when µX (t) = E (Xt) and the
autocovariance function

BX (t, τ) = cov (Xt ,Xt+τ )

are almost periodic function at t for every τ ∈ Z.
Function f is almost periodic in the norm ‖·‖ if
for each ε there exists an almost period Pε such that

‖f (·+ Pε)− f (·)‖ < ε

.
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Introduction to FDA

To start, we will see any signal {X (t) ; t ∈ Z} as a collection of
independent curves {yi (u), i = 1, . . . ,N; u ∈ A} belonging to a
Hilbert space H. For simplicity, assume that H = L2[A] and
A = [0, 1].

Now, let us see the fundamental steps of the FDA approach to
signal analysis.
Step 1 The stochastic model for the signal is the random element
X from (Ω,F ,P) to L2[0, 1].
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FDA - cont.

Step 2 Expectation of the random element

If X is integrable, there is a unique function µ ∈ L2 such that
E〈y ,X 〉 = 〈y , µ〉 ∀ y ∈ L2. It follows that µ(t) = E[X (t)] for
almost all t ∈ [0, 1].
Step 3 Covariance operator

For X intergrable and EX = 0, the covariance operator of X is
de�ned by

C (y) = E[〈X , y〉X ], y ∈ L2.

Notice that

C (y)(t) =E[〈X , y〉X (t)] = E
∫

X (s)y(s)dsX (t) =

=

∫
E[X (s)X (t)]︸ ︷︷ ︸

=c(s,t)

y(s)ds =

∫
c(s, t)y(s)ds.
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FDA - covariance

Step 4. Eigenvalues and eigenfunctions of the covariance

operator

Let vj , λj , j ≥ 1 be the eigenfunctions and the eigenvalues of the
covariance operator C . The relation C (vj) = λjvj implies that

λj = 〈C (vj), vj〉 = 〈E[〈X , vj〉X ], vj〉 = E〈X , vj〉2.

Having de�ned the mean and the covariance of the random
element, we will proceed to the usual statistical questions, that is:

What is the approximate distribution of the linear statistics for
samples generated by our random element ?
How to introduce the estimator of the covariance ?
Is there any chance for the dimensionality reduction ?
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FDA - CLT

Suppose {Xn, n ≥ 1} is a sequence of iid mean zero random
elements in a separable Hilbert space such that E‖Xi‖2 <∞. Then

1√
N

N∑
n=1

Xn
d→ Z

where Z is a Gaussian random element with the covariance operator

C (x) = E[〈Z , x〉Z ] = E[〈X1, x〉X1].

Notice that a normally distributed function Z with a covariance
operator C admits the expansion (Karhunen-Lòeve representation)

Z
d
=
∞∑
j=1

√
λjNjvj

where Nj
iid∼ N (0, 1), λj , vj - eigenvalues, eigenfunctions of the

covariance operator C .
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FDA - estimation

µ(t) =E[X (t)] (mean function);

c(t, s) =E[(X (t)− µ(t))(X (s)− µ(s))] (covariance function);

C =E[〈(X − µ), ·〉(X − µ)] (covariance operator).

estimators:

µ̂(t) =
1

N

N∑
i=1

Xi (t);

ĉ(t, s) =
1

N

N∑
i=1

(Xi (t)− µ̂(t))(Xi (s)− µ̂(s));

Ĉ (x) =
1

N

N∑
i=1

〈Xi − µ̂, x〉(Xi − µ̂), x ∈ L2.
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FDA estimation - cont.

Assume that the observations have mean zero. We therefore have

ĉ(t, s) =
1

N

N∑
i=1

Xi (t)Xi (s); Ĉ (x) =
1

N

N∑
i=1

〈Xi , x〉Xi , x ∈ L2

therefore

Ĉ (x)(t) =

∫
ĉ(t, s)x(s)ds, x ∈ L2.

Introduce the random functions

ZN(t, s) =
√
N(ĉ(s, t)− c(s, t))

where ĉ(s, t), c(s, t) are centered with the (sample) mean function.

Jacek Le±kow Cyclostationarity, FDA



Abstract
Introduction

Reducing the dimensionality with FDA
Cyclostationarity and FDA

Motivation
APC stochastic models
Introduction to FDA

FDA CLT for covariance

If the observations X1,X2, . . . ,XN are iid in L2, and have the same
distribution as X , which is assumed to be square integrable with
EX (t) = 0 and E‖X‖4 <∞, then ZN(t, s) converges weakly in
L2([0, 1]× [0, 1]) to a Gaussian process Γ(t, s) with EΓ(t, s) = 0
and

E[Γ(t, s)Γ(t ′, s ′)] = E[X (t)X (s)X (t ′)X (s ′)]− c(t, s)c(t ′, s ′).

For the lovers of spectrogram

If X1,X2, . . . ,XN represent functions of the frequency (vertical
stripes), then FDA approach provides a simple description of the
whole energy of the signal.
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FDA and reduction of dimensionality

Let λ1 > λ2 > . . . be the eigenvalues of operator C . The
eigenfunctions vj are de�ned by Cvj = λjvj . The vj are typically
normalized, so that‖vj‖ = 1.

ĉj = sign(〈v̂j , vj〉)∫
ĉ(s, t)v̂j(s)ds = λ̂j v̂j(t), j = 1, 2, . . . ,N.

Using the above ideas we will construct optimal empirical

orthonormal basis for our signal {X (t) ; t ∈ Z} represented by
random elements X1, . . . ,XN . In the context of the spectrogram
X1, . . . ,XN can be seen as the vertical stripes.
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Suppose we observe functions x1, x2, . . . , xN . Fix an integer
Z 3 p < N(p � N). We want to �nd an orthonormal basis
u1, u2, . . . , up such that

Ŝ2 =
N∑
i=1

∥∥∥xi − p∑
k=1

〈xi , uk〉uk
∥∥∥2

is minimum.

Empirical basis

xixixi = [〈xi , u1〉, 〈xi , u2〉, . . . , 〈xi , up〉]T .

The functions uj are called collectively the optimal empirical
orthonormal basis or natural orthonormal components.
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Empirical basis and covariance

The functions u1, u2, . . . , up minimizing Ŝ2 are equal (up to a sign)
to the normalized eigenfunctions of the corresponding sample
covariance operator.

We have

Ŝ2 =
N∑
i=1

(
‖xi‖2 −

p∑
k=1

〈xi , uk〉2
)

Ŝ2 is minimum, when
N∑
i=1

p∑
k=1

〈xi , uk〉2 is maximum.

N∑
i=1

p∑
k=1

〈xi , uk〉2 = N
p∑

k=1

〈Ĉ (uk), uk〉

= N
p∑

k=1

∞∑
j=1

λ̂j〈uk , v̂j〉2 ≤ N
p∑

k=1

λ̂k

maximum is attained if u1 = v̂1, u2 = v̂2, . . . , up = v̂p.
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Dimensionality reduction can be achieved by

Constructing the empirical basis

Choosing the number of components p such that the model
will exhaust the most important part of the energy
(variance/covariance) of the signal

Working with eigenvalues instead of many functions

Choosing p

To this end we can consider the function

CPV (p) =

p∑
i=1

λ̂i

N∑
i=1

λ̂i
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F-AR(1) model

Our starting point is again a sequence of Hilbert space valued
random elements X1, . . . ,XN that no longer are assumed
independent. In the spectrogram representation, it is NOT realistic
to assume that vertical stripes are independent.
Consider the model

F-AR(1)

Xn = Ψ(Xn−1) + εn

where Ψ ∈ L while L is the space of bounded continuous linear
operators on L2 equipped with the sup norm. Moreover, εn is a
sequence of iid mean zero elements in L2.
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F-AR(1) model

It is known that under appropriate conditions (see Horvath,
Kokoszka (2012)) we have that F-AR(1) is causal and strictly
stationary.

Example of Ψ

Consider

Ψ(x)(t)
def
=

∫
ψ(t, s)x(s)ds

where x ∈ L2 and
∫ ∫

ψ2(t, s)dtds < 1.
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Estimation in F-AR(1)

De�ne the lag 1 autocovariance operator

C1(x) = E[〈Xn, x〉 Xn+1], x ∈ L2

Like in the scalar case, we have the relationship

C1 = ΨC

where C is the covariance operator. Thus, to estimate Ψ we could
de�ne

Ψ̂ = Ĉ1Ĉ
−1.

Warning: getting Ĉ−1 may be di�cult. However, we will use the
empirical basis principle and take only p �rst components.
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Estimation in F-AR(1)

Instead, we use

ÎCp(x) =
p∑

j=1

λ̂−1j 〈x , v̂j〉v̂j .

We get: Ĉ1(x) =
1

N − 1

N−1∑
k=1

〈Xk , x〉Xk+1

For any x ∈ L2 obtain

Ĉ1 ÎCp(x) =
1

N − 1

N−1∑
k=1

p∑
j=1

λ̂−1j 〈x , v̂j〉〈Xk , v̂j〉Xk+1.

The estimate

Ψ̂p(x) =
1

N − 1

N−1∑
k=1

p∑
j=1

p∑
i=1

λ̂−1j 〈x , v̂j〉〈Xk , v̂j〉〈Xk+1, v̂i 〉v̂i .
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P-AR(1) and FP-AR model

The cyclostationary generalization of the usual AR(1) model
yt = φ · yt−1 + εt is the P-AR(1) model yt = φ(t) · yt−1 + εt , where
φ(t) is assumed to be periodic with the period P . The estimation
P-AR(1) model can be solved by stacking up the original data into
vectors of the length P and writing a vector AR(1) model for them.
The same trick can be done in the F-AR(1) model to compensate
for cyclostationarity of the functional data. Consider:

FP-AR(1)

Xn = Ψ(n)(Xn−1) + εn

where Ψ(n + P) = Ψ(n) and for each i Ψ(i) ∈ L while L is the
space of bounded continuous linear operators on L2 equipped with
the sup norm. Moreover, εn is a sequence of iid mean zero
elements in L2.
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Eigenvalues and scores for the �rst group
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Eigenvalues provide a signature for the PC functional signal
First group

eigenvalue block bootstrap CPV

0.006410 8.330787 · 10−3 14.529901 · 10−3 21%

0.005281 5.299198 · 10−3 9.958018 · 10−3 37%

0.004496 3.760670 · 10−3 6.412833 · 10−3 52%

0.004096 2.061348 · 10−17 4.677168 · 10−3 65%

0.003605 1.263881 · 10−17 3.260474 · 10−3 76%

0.002478 9.668592 · 10−18 2.404282 · 10−3 84%
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Eigenvalues - cntd.
Second group

eigenvalue block bootstrap CPV

0.005929 6.875680 · 10−3 12.830428 · 10−3 19%

0.005410 5.304248 · 10−3 9.620010 · 10−3 35%

0.005081 3.641856 · 10−3 6.456256 · 10−3 51%

0.003749 2.379073 · 10−17 4.252976 · 10−3 63%

0.003033 1.242109 · 10−17 3.477051 · 10−3 73%

0.002640 9.368904 · 10−18 2.669335 · 10−3 81%
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Third group

eigenvalue block bootstrap CPV

0.008586 7.324938 · 10−3 14.848730 · 10−3 29%

0.004144 3.991475 · 10−3 8.019414 · 10−3 43%

0.004021 2.313940 · 10−17 5.214372 · 10−3 56%

0.003285 1.353050 · 10−18 3.755904 · 10−3 67%

0.002625 9.304354 · 10−18 2.966601 · 10−3 76%

0.002261 7.704712 · 10−18 2.324539 · 10−3 84%
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Signal reconstruction - �rst group
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Some open questions:

APC models from FDA perspective

Solid limit theory approach for the estimators

Validity of bootstrap
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Thank you for your attention
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