Functional Data Analysis in Statistical Processing of Cyclostationary Signals. Theory and Applications

Jacek Leśkow

Cracow Technical University Poland

14th Grodek meeting, February 2021

Plan of the talk I

2 Introduction

- Motivation
- APC stochastic models
- Introduction to FDA
- 8 Reducing the dimensionality with FDA
 - Eigenvalues, eigenfunctions
 - Empirical basis

④ Cyclostationarity and FDA

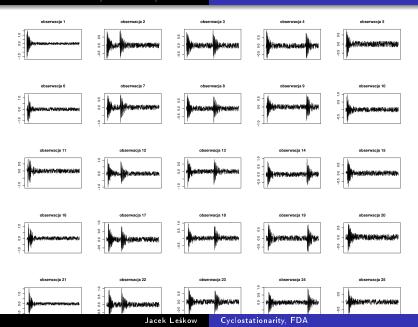
- Functional AR(1) model
- Estimation in F-AR(1)
- P-AR and FP-AR model
- Applications of FDA

Abstract

Main goals of the talk:

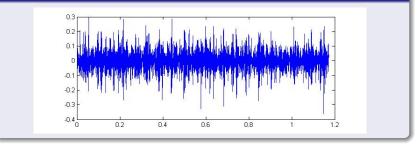
- Review recent ideas on functional data analysis (FDA)
- Implementation of FDA in the context of PC/APC signals
- FDA language and estimation for PC/APC.

Motivation APC stochastic models Introduction to FDA



Motivation APC stochastic models Introduction to FDA

The segments usually come out of this.



Motivation APC stochastic models Introduction to FDA

Definition of APC

We say that $\{X(t); t \in \mathbb{Z}\}$ - APC, when $\mu_X(t) = E(X_t)$ and the autocovariance function

$$B_X(t,\tau) = \operatorname{cov}(X_t, X_{t+\tau})$$

are almost periodic function at t for every $\tau \in \mathbb{Z}$. Function f is almost periodic in the norm $\|\cdot\|$ if for each ϵ there exists an almost period P_{ϵ} such that

$$\|f(\cdot + P_{\epsilon}) - f(\cdot)\| < \epsilon$$

Motivation APC stochastic models Introduction to FDA

Introduction to FDA

To start, we will see any signal $\{X(t); t \in \mathbb{Z}\}\$ as a collection of independent curves $\{y_i(u), i = 1, ..., N; u \in A\}$ belonging to a Hilbert space \mathcal{H} . For simplicity, assume that $\mathcal{H} = L^2[A]$ and A = [0, 1].

Now, let us see the fundamental steps of the FDA approach to signal analysis.

Step 1 The stochastic model for the signal is the random element X from (Ω, \mathcal{F}, P) to $L^2[0, 1]$.

Motivation APC stochastic models Introduction to FDA

Step 2 Expectation of the random element

If X is integrable, there is a unique function $\mu \in L^2$ such that $\mathbb{E}\langle y, X \rangle = \langle y, \mu \rangle \ \forall \ y \in L^2$. It follows that $\mu(t) = \mathbb{E}[X(t)]$ for almost all $t \in [0, 1]$.

Step 3 Covariance operator

For X intergrable and $\mathbb{E}X = 0$, the covariance operator of X is defined by

$$C(y) = \mathbb{E}[\langle X, y \rangle X], \quad y \in L^2.$$

Notice that

(

FDA - cont.

$$\mathcal{L}(y)(t) = \mathbb{E}[\langle X, y \rangle X(t)] = \mathbb{E} \int X(s)y(s)dsX(t) =$$
$$= \int \underbrace{\mathbb{E}[X(s)X(t)]}_{=c(s,t)} y(s)ds = \int c(s,t)y(s)ds.$$

Motivation APC stochastic models Introduction to FDA

FDA - covariance

Step 4. Eigenvalues and eigenfunctions of the covariance operator

Let $v_j, \lambda_j, j \ge 1$ be the eigenfunctions and the eigenvalues of the covariance operator C. The relation $C(v_i) = \lambda_i v_i$ implies that

$$\lambda_j = \langle C(v_j), v_j \rangle = \langle \mathbb{E}[\langle X, v_j \rangle X], v_j \rangle = \mathbb{E} \langle X, v_j \rangle^2.$$

Having defined the mean and the covariance of the random element, we will proceed to the usual statistical questions, that is:

What is the approximate distribution of the linear statistics for samples generated by our random element ? How to introduce the estimator of the covariance ? Is there any chance for the dimensionality reduction ?

イロト イポト イヨト イヨト

FDA - CLT

Motivation APC stochastic models Introduction to FDA

Suppose $\{X_n, n \geq 1\}$ is a sequence of iid mean zero random

elements in a separable Hilbert space such that $\mathbb{E}\|X_i\|^2 < \infty$. Then

$$\frac{1}{\sqrt{N}}\sum_{n=1}^{N}X_{n}\stackrel{d}{\rightarrow}Z$$

where Z is a Gaussian random element with the covariance operator

$$C(x) = \mathbb{E}[\langle Z, x \rangle Z] = \mathbb{E}[\langle X_1, x \rangle X_1].$$

Notice that a normally distributed function Z with a covariance operator C admits the expansion (Karhunen-Loeve representation)

$$Z \stackrel{d}{=} \sum_{j=1}^{\infty} \sqrt{\lambda_j} N_j v_j$$

where $N_j \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1)$, λ_j, v_j - eigenvalues, eigenfunctions of the covariance operator $\int_{\text{Jacek Leśkow}} Cyclostationarity, FDA$

Motivation APC stochastic models Introduction to FDA

FDA - estimation

$$\begin{split} \mu(t) = & \mathbb{E}[X(t)] \quad (\text{mean function}); \\ c(t,s) = & \mathbb{E}[(X(t) - \mu(t))(X(s) - \mu(s))] \quad (\text{covariance function}); \\ & C = & \mathbb{E}[\langle (X - \mu), \cdot \rangle (X - \mu)] \quad (\text{covariance operator}). \end{split}$$

estimators:

$$\hat{\mu}(t) = \frac{1}{N} \sum_{i=1}^{N} X_i(t);$$

$$\hat{c}(t,s) = \frac{1}{N} \sum_{i=1}^{N} (X_i(t) - \hat{\mu}(t))(X_i(s) - \hat{\mu}(s));$$

$$\hat{C}(x) = \frac{1}{N} \sum_{j=1}^{N} \langle X_j - \hat{\mu}, x \rangle (X_j - \hat{\mu}), \quad x \in L^2; \quad x \in \mathbb{R}$$

$$j_{\text{acek Leskow}} \qquad \text{Cyclostationarity, FDA}$$

Motivation APC stochastic models Introduction to FDA

FDA estimation - cont.

Assume that the observations have mean zero. We therefore have

$$\hat{c}(t,s) = rac{1}{N}\sum_{i=1}^{N}X_i(t)X_i(s); \qquad \hat{C}(x) = rac{1}{N}\sum_{i=1}^{N}\langle X_i,x
angle X_i, \quad x\in L^2$$

therefore

$$\hat{C}(x)(t)=\int \hat{c}(t,s)x(s)ds, \quad x\in L^2.$$

Introduce the random functions

$$Z_N(t,s) = \sqrt{N}(\hat{c}(s,t) - c(s,t))$$

where $\hat{c}(s,t), c(s,t)$ are centered with the (sample) mean function.

< ロ > < 同 > < 三 > < 三 >

Motivation APC stochastic models Introduction to FDA

FDA CLT for covariance

If the observations X_1, X_2, \ldots, X_N are iid in L^2 , and have the same distribution as X, which is assumed to be square integrable with $\mathbb{E}X(t) = 0$ and $\mathbb{E}||X||^4 < \infty$, then $Z_N(t,s)$ converges weakly in $L^2([0,1] \times [0,1])$ to a Gaussian process $\Gamma(t,s)$ with $\mathbb{E}\Gamma(t,s) = 0$ and

$$\mathbb{E}[\Gamma(t,s)\Gamma(t',s')] = \mathbb{E}[X(t)X(s)X(t')X(s')] - c(t,s)c(t',s').$$

For the lovers of spectrogram

If X_1, X_2, \ldots, X_N represent functions of the frequency (vertical stripes), then FDA approach provides a simple description of the whole energy of the signal.

< □ > < 同 > < 回 >

Eigenvalues, eigenfunctions Empirical basis

FDA and reduction of dimensionality

Let $\lambda_1 > \lambda_2 > \ldots$ be the eigenvalues of operator *C*. The eigenfunctions v_j are defined by $Cv_j = \lambda_j v_j$. The v_j are typically normalized, so that $||v_j|| = 1$.

$$\hat{c}_j = \mathsf{sign}(\langle \hat{v}_j, v_j
angle)$$

$$\int \hat{c}(s,t)\hat{v}_j(s)ds = \hat{\lambda}_j\hat{v}_j(t), \quad j = 1, 2, \dots, N.$$

Using the above ideas we will construct **optimal empirical** orthonormal basis for our signal $\{X(t); t \in \mathbb{Z}\}$ represented by random elements X_1, \ldots, X_N . In the context of the spectrogram X_1, \ldots, X_N can be seen as the vertical stripes.

くロト く得ト くヨト くヨト

Suppose we observe functions x_1, x_2, \ldots, x_N . Fix an integer $\mathbb{Z} \ni p < N(p \ll N)$. We want to find an orthonormal basis u_1, u_2, \ldots, u_p such that

$$\hat{S}^2 = \sum_{i=1}^{N} \left\| x_i - \sum_{k=1}^{p} \langle x_i, u_k \rangle u_k \right\|^2$$

is minimum.

Empirical basis

$$\boldsymbol{x_i} = [\langle x_i, u_1 \rangle, \langle x_i, u_2 \rangle, \dots, \langle x_i, u_p \rangle]^T.$$

The functions u_i are called collectively the optimal empirical orthonormal basis or natural orthonormal components.

< □ > < 同 > < 回 >

Eigenvalues, eigenfunctions Empirical basis

Empirical basis and covariance

The functions u_1, u_2, \ldots, u_p minimizing \hat{S}^2 are equal (up to a sign) to the normalized eigenfunctions of the corresponding sample covariance operator.

We have

$$\hat{S}^2 = \sum_{i=1}^{N} \left(\|x_i\|^2 - \sum_{k=1}^{p} \langle x_i, u_k \rangle^2 \right)$$

 \hat{S}^2 is minimum, when $\sum_{i=1}^N \sum_{k=1}^p \langle x_i, u_k \rangle^2$ is maximum.

$$\sum_{i=1}^{N} \sum_{k=1}^{p} \langle x_i, u_k \rangle^2 = N \sum_{k=1}^{p} \langle \hat{C}(u_k), u_k \rangle$$
$$= N \sum_{k=1}^{p} \sum_{j=1}^{\infty} \hat{\lambda}_j \langle u_k, \hat{v}_j \rangle^2 \le N \sum_{k=1}^{p} \hat{\lambda}_k$$

maximum is attained if $u_1 = \hat{v}_1, u_2 = \hat{v}_2, \dots, u_{\overline{p}} = \hat{v}_{p}$ is attained if $u_1 = \hat{v}_1, u_2 = \hat{v}_2, \dots, u_{\overline{p}} = \hat{v}_p$.

Dimensionality reduction can be achieved by

- Constructing the empirical basis
- Choosing the number of components p such that the model will exhaust the most important part of the energy (variance/covariance) of the signal
- Working with eigenvalues instead of many functions

Choosing *p*

To this end we can consider the function

$$CPV(p) = rac{\sum\limits_{i=1}^{p} \hat{\lambda}_i}{\sum\limits_{i=1}^{N} \hat{\lambda}_i}$$

F-AR(1) model

Functional AR(1) model Estimation in F-AR(1) P-AR and FP-AR model Applications of FDA

Our starting point is again a sequence of Hilbert space valued random elements X_1, \ldots, X_N that no longer are assumed independent. In the spectrogram representation, it is NOT realistic to assume that vertical stripes are independent. Consider the model

F-AR(1)

$$X_n = \Psi(X_{n-1}) + \varepsilon_n$$

where $\Psi \in \mathcal{L}$ while \mathcal{L} is the space of bounded continuous linear operators on L^2 equipped with the sup norm. Moreover, ε_n is a sequence of iid mean zero elements in L^2 .

< □ > < 同 > < 回 >

F-AR(1) model

Functional AR(1) model Estimation in F-AR(1) P-AR and FP-AR model Applications of FDA

It is known that under appropriate conditions (see Horvath, Kokoszka (2012)) we have that F-AR(1) is causal and strictly stationary.

Example of Ψ

Consider

$$\Psi(x)(t) \stackrel{ extsf{def}}{=} \int \psi(t,s) x(s) ds$$

where $x \in L^2$ and $\int \int \psi^2(t,s) dt ds < 1$.

Functional AR(1) model Estimation in F-AR(1) P-AR and FP-AR model Applications of FDA

Estimation in F-AR(1)

Define the lag 1 autocovariance operator

$$C_1(x) = \mathbb{E}[\langle X_n, x \rangle | X_{n+1}], \ x \in L^2$$

Like in the scalar case, we have the relationship

 $C_1 = \Psi C$

where C is the covariance operator. Thus, to estimate Ψ we could define

$$\hat{\Psi}=\hat{C}_1\hat{C}^{-1}$$

Warning: getting \hat{C}^{-1} may be difficult. However, we will use the empirical basis principle and take only p first components.

Functional AR(1) model Estimation in F-AR(1) P-AR and FP-AR model Applications of FDA

Estimation in F-AR(1)

Instead, we use

$$\begin{split} \widehat{IC}_{p}(x) &= \sum_{j=1}^{p} \widehat{\lambda}_{j}^{-1} \langle x, \widehat{v}_{j} \rangle \widehat{v}_{j}. \\ \text{We get: } \widehat{C}_{1}(x) &= \frac{1}{N-1} \sum_{k=1}^{N-1} \langle X_{k}, x \rangle X_{k+1} \\ \text{For any } x \in L^{2} \text{ obtain} \\ \widehat{C}_{1} \widehat{IC}_{p}(x) &= \frac{1}{N-1} \sum_{k=1}^{N-1} \sum_{j=1}^{p} \widehat{\lambda}_{j}^{-1} \langle x, \widehat{v}_{j} \rangle \langle X_{k}, \widehat{v}_{j} \rangle X_{k+1}. \end{split}$$

The estimate

$$\widehat{\Psi}_{p}(x) = \frac{1}{N-1} \sum_{k=1}^{N-1} \sum_{j=1}^{p} \sum_{i=1}^{p} \widehat{\lambda}_{j}^{-1} \langle x, \widehat{v}_{j} \rangle \langle X_{k}, \widehat{v}_{j} \rangle \langle X_{k+1}, \widehat{v}_{i} \rangle \widehat{v}_{i}.$$

< □ > < □ > < □ > < □ > < □ >

Functional AR(1) model Estimation in F-AR(1) P-AR and FP-AR model Applications of FDA

P-AR(1) and FP-AR model

The cyclostationary generalization of the usual AR(1) model $y_t = \phi \cdot y_{t-1} + \epsilon_t$ is the P-AR(1) model $y_t = \phi(t) \cdot y_{t-1} + \epsilon_t$, where $\phi(t)$ is assumed to be periodic with the period P. The estimation P-AR(1) model can be solved by stacking up the original data into vectors of the length P and writing a vector AR(1) model for them. The same trick can be done in the F-AR(1) model to compensate for cyclostationarity of the functional data. Consider:

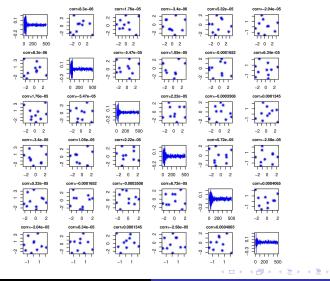
FP-AR(1)

 $X_n = \Psi(n)(X_{n-1}) + \varepsilon_n$

where $\Psi(n+P) = \Psi(n)$ and for each $i \ \Psi(i) \in \mathcal{L}$ while \mathcal{L} is the space of bounded continuous linear operators on L^2 equipped with the sup norm. Moreover, ε_n is a sequence of iid mean zero elements in L^2 .

Abstract Functional AR(1) mod Introduction Estimation in F-AR(1) Reducing the dimensionality with FDA Cyclostationarity and FDA Applications of FDA

Eigenvalues and scores for the first group

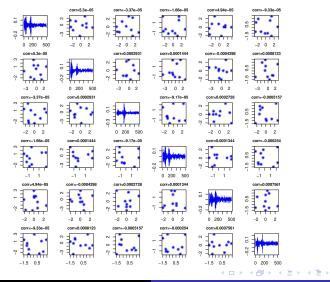


Jacek Leśkow

Cyclostationarity, FDA

Abstract Functional AR(1) model Introduction Estimation in F-AR(1) Reducing the dimensionality with FDA P-AR and FP-AR mod Cyclostationarity and FDA Applications of FDA

Eigenvalues and scores for the second group

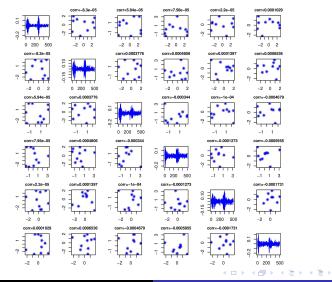


Jacek Leśkow

Cyclostationarity, FDA

Abstract Functional AR(1) mo Introduction Estimation in F-AR(1) Reducing the dimensionality with FDA Cyclostationarity and FDA Applications of FDA

Eigenvalues and scores for the third group



Jacek Leśkow

Cyclostationarity, FDA

Abstract Functional AR(1) model Introduction Estimation in F-AR(1) Reducing the dimensionality with FDA P-AR and FP-AR model Cyclostationarity and FDA Applications of FDA

Eigenvalues provide a signature for the PC functional signal **First group**

eigenvalue	block bootstrap		CPV
0.006410	$8.330787 \cdot 10^{-3}$	$14.529901 \cdot 10^{-3}$	21%
0.005281	$5.299198 \cdot 10^{-3}$	$9.958018 \cdot 10^{-3}$	37%
0.004496	$3.760670 \cdot 10^{-3}$	$6.412833 \cdot 10^{-3}$	52%
0.004096	$2.061348 \cdot 10^{-17}$	$4.677168 \cdot 10^{-3}$	65%
0.003605	$1.263881 \cdot 10^{-17}$	$3.260474 \cdot 10^{-3}$	76%
0.002478	$9.668592 \cdot 10^{-18}$	$2.404282 \cdot 10^{-3}$	84%

Image: Image:

Eigenvalues - cntd.

Second group

eigenvalue	block bootstrap		CPV
0.005929	$6.875680 \cdot 10^{-3}$	$12.830428 \cdot 10^{-3}$	19%
0.005410	$5.304248 \cdot 10^{-3}$	$9.620010 \cdot 10^{-3}$	35%
0.005081	$3.641856 \cdot 10^{-3}$	$6.456256 \cdot 10^{-3}$	51%
0.003749	$2.379073 \cdot 10^{-17}$	$4.252976 \cdot 10^{-3}$	63%
0.003033	$1.242109 \cdot 10^{-17}$	$3.477051 \cdot 10^{-3}$	73%
0.002640	$9.368904 \cdot 10^{-18}$	$2.669335 \cdot 10^{-3}$	81%

< < >> < <</>

Abstract Functional AR(1) model Introduction Estimation in F-AR(1) Reducing the dimensionality with FDA Cyclostationarity and FDA

Third group

eigenvalue	block bootstrap		CPV
0.008586	$7.324938 \cdot 10^{-3}$	$14.848730 \cdot 10^{-3}$	29%
0.004144	$3.991475 \cdot 10^{-3}$	$8.019414 \cdot 10^{-3}$	43%
0.004021	$2.313940 \cdot 10^{-17}$	$5.214372 \cdot 10^{-3}$	56%
0.003285	$1.353050 \cdot 10^{-18}$	$3.755904 \cdot 10^{-3}$	67%
0.002625	$9.304354 \cdot 10^{-18}$	$2.966601 \cdot 10^{-3}$	76%
0.002261	$7.704712 \cdot 10^{-18}$	$2.324539 \cdot 10^{-3}$	84%

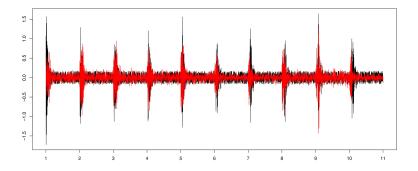
æ

-∢ ≣⇒

<ロト <四ト < 回ト

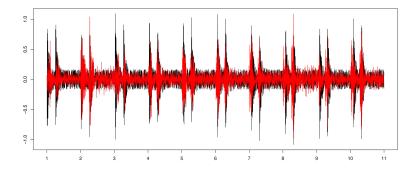
Abstract	Functional AR(1) model
Introduction	Estimation in F-AR(1)
Reducing the dimensionality with FDA	P-AR and FP-AR model
Cyclostationarity and FDA	Applications of FDA

Signal reconstruction - first group



Abstract Functional AR(1) model Introduction Estimation in F-AR(1) Reducing the dimensionality with FDA Cyclostationarity and FDA Applications of FDA

Signal reconstruction - second group

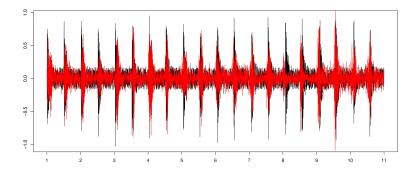


(日)

э

Abstract Functional AR(1) model Introduction Estimation in F-AR(1) Reducing the dimensionality with FDA Cyclostationarity and FDA Applications of FDA

Signal reconstruction - third group



・ロト ・日下・ ・ ヨト

Functional AR(1) model Estimation in F-AR(1) P-AR and FP-AR model Applications of FDA

Some open questions:

- APC models from FDA perspective
- Solid limit theory approach for the estimators
- Validity of bootstrap

Image: Image:

< E

Functional AR(1) model
Estimation in F-AR(1)
P-AR and FP-AR model
Applications of FDA

Thank you for your attention