
Supported by:

Internal Identifier: EITRM106886:
AMICOS Training Material set 1:
Simultaneous Localization and
Mapping

Supported by:

Why do we need to know where we are?

Without any information about our location and spatial awareness

you wouldn’t be able to:

• think about where you are now,

• remember where everything is.

• estimate a distance to something you see

(eye-hand coordination wouldn’t exist),

• navigate to any place (another room, a workplace etc.)

• and many more, otherwise trivial activities.

• These abilities are essential for humans… as well as for autonomous robots.

Importance of location

Supported by:

Localization in an open space

Plain solution:

GNSS – Global Navigation Satellite System

Often incorrectly called GPS, because those systems include:

GPS (Global Positioning System; USA), GLONASS (Russia), Beidou

(China), Galileo (EU).

They provide positioning services, using satellite constallations, which emit

radio time signals along line of sight with high precision. Knowing satellites

location at exact time, an electronic device (GNSS receiver) can determine its

position with triangulation. Local correction services or differential

measurements can further improve the relability and accuracy.

Accuracy: up to a few metres for a plain solution, up to ~2 cm in RTK mode.

Doesn’t work properly indoors  demand for a suitable solution for an indoor environment.

Supported by:

Problem introduction

To understand how does the robot can see and perceive the world,

we should ask ourselves a question:

How do we see it?

How do we know where we are?

How can we identify and locate different objects around us?

How can we judge a distance to something?

Imagine your way from home to work/university. What did you imagine?

What information acquired in the past did you use to do it?

Supported by:

How do we see the world?

5 core senses:

1. Sight

2. Hearing

3. Smell

4. Touch

5. Taste

…is that all?

Of course not!

Supported by:

More senses!

Neurologists argue over the total numer of human senses. Different classifications can include as many as 21 or

even 53 senses. Despite the dispute about most of them, there are 4 generally accepted additional senses:

6. Thermoception - the perception of heat,

7. Nociception - the perception of pain,

8. Equilibrioception - the perception of balance,

9. Proprioception (kinaesthesia) - the perception of body awareness (e. g. self-movement, body position).

For the most part, we use:

a) sight to create a „representation of the surroundings” in our brain (a map),

b) sight, touch, equilibrioception and proprioception to locate ourselves in the environment and determine our

position.

Supported by:

Spatial knowledge: A map

A map is a symbolic depiction emphasizing relationships between elements of some space, such as

objects, regions, or themes1. In robotics, we can think of it as a 2D or 3D model of the robot’s surroundings.

Local map precisely describes the space in the proximity of the robot. It’s important for collision avoidance,

object detection and interaction with them (equivalent of eye-hand coordination).

Global map can be much sparser. Information from it should allow the robot to find and plan a path

(usually the shortest or the fastest) from its position to the destination.

1 https://en.wikipedia.org/wiki/Map

https://en.wikipedia.org/wiki/Map

Supported by:

Creating a map from scratch

Chicken-or-egg problem:
• to create a map, you need to know the robot (sensor) position,

• to localize the robot, you need both the sensor readings and the map
of its surroundings.

Potential solution must:

• be autonomous,

• allow constant updates of the

changing environment,

• provide good accuracy for a given robot application (up to a few

cm),

• be able to be calculated in real-time.

Supported by:

What data can we use?

Apart from the data acquisition, the data processing is the real problem.

How do we get the knowledge from the raw data?

Human sense Task Robot sensor

Sight
object recognition, spatial vision

(distance estimation),
visual map creation

cameras, laser scanner

Equilibrioception
movement estimation (change of

direction, speed, acceleration)

accelerometer, gyroscope,
magnetometer (integrated - Inertial

Measurement Unit)

Proprioception body position estimation joint state sensors, odometry

Can we simulate human senses with different robot sensors?

Supported by:

Solution: SLAM
SLAM

Simulataneous Localization and Mapping

Allows mapping and navigation in the unknown

environment, without GNSS (buildings, mines, caves,

mixed environment).

Ability to use data fusion from various sensors:

laser scanner, gyroscopes, accelerometers,

magnetometers, odometers, cameras, GNSS.

Applications:

Autonomous: vacuum cleaners (Roomba), lawn movers,

drones, vehicles, robots for exploring dangerous places

(mines, caves), planetary rovers.

Graph source: http://everobotics.org/pdf/SLAMTutorial.pdf

http://everobotics.org/pdf/SLAMTutorial.pdf

Supported by:

SLAM: Sensors

Odometry

Inertial Measurement Unit (IMU)

Monocular camera

Stereo/depth camera

2D laser scanner

3D laser scanner

SupplementaryMain

Supported by:

SLAM: Sensors

Odometry

Robot localization based on travelled distance, measured with wheel encoders

• Simple implementation

and calculations,

• Cheap

• Differential method: positioning drift

increasing with time,

• Only planar positioning,

• Many possible error sources

(calibration, slippage, impact),

• Available only for wheeled devices

Supported by:

SLAM: Sensors

Odometry

Influence of small calibration error on

the odometry-derrived robot path

Supported by:

SLAM: Sensors

Inertial Measurement Unit (IMU)

IMU consists of elements measuring:

a) Gyroscope – angular velocity (yaw pitch roll),

b) Accelerometer, - linear acceleration,

c) Magnetometer (optional) – magnetic field.

3 DoF for each component = 9 DoF IMU

• Cost scalability: cheap

entry-level sensors,

costly precise units,

• 3D positioning and

orientation

information,

• Possible to use in

UGVs, UAVs or UUVs

• Positioning drift with

time,

• Prone to sudden

motion changes

(vibrations, impact),

• No information about

robot’s surroundings

Supported by:

SLAM: Sensors

Inertial Measurement Unit (IMU)

IMU + device with software calculating attitude and heading

= Attitude Heading Reference System (AHRS)

IMU + device with software calculating position, velocity and heading

= Inertial Navigation System (INS)

Supported by:

SLAM: Sensors

Inertial Measurement Unit (IMU)

IMU-derrived path (blue) and

ground truth (red)

IMU-derrived path (blue) and

ground truth (red)

Vibration impact on

IMU positioning

Non-amortized vehicle Amortized vehicle

Supported by:

SLAM: Sensors
Monocular camera

Localization and mapping based on

Structure-from-Motion (SfM) methods

• 3D positioning and map

reconstruction,

• Additional data – RGB

colors,

• High frequency,

• Efficient image processing

algorithms available,

• High resolution

• Limited FOV,

• No scale of the resulting

model,

• Camera calibration

needed,

• Affected by changing or

weak lightning conditions,

• Medium range

Supported by:

SLAM: Sensors
Stereo/depth camera

Localization and mapping based on

Structure-from-Motion (SfM) methods

• 3D positioning and

map reconstruction,

• Additional data – depth

maps, RGB colors (and

sometimes infrared),

• Sometimes active

sensors,

• High resolution

• Limited FOV,

• Camera calibration

needed,

• Affected by changing,

weak lightning

conditions or materials

of low reflectivity,

• Medium range

Supported by:

SLAM: Sensors
Stereo/depth camera

Sample data from a depth camera

Supported by:

SLAM: Sensors
2D laser scanner

Laser rangefinder rotating in one plane

• 2D positioning and

map reconstruction,

• Metric data with good

accuracy,

• High (often 360°) FOV,

• Unaffected by

illumination,

• High range

• Only planar map and

path estimation,

• No vertical motion

data may influence

planar map errors (e.g.

robot pitch changes)

Supported by:

SLAM: Sensors
2D laser scanner

Example laser scan

Supported by:

SLAM: Sensors
3D laser scanner

Set of laser rangefinders acquiring data

in more than one plane

• 3D positioning and

map reconstruction,

• Metric data with

good accuracy,

• High (often 360°in

base plane) FOV,

• Unaffected by

illumination,

• High range

• Vertical motion can

still cause robot

pitch drift (no

gravity vector

estimation)

Supported by:

SLAM: Sensors
3D laser scanner

360° FOV, limited vertical

resolution (ring pattern)

Supported by:

SLAM: Sensors
3D laser scanner

Lower FOV, better vertical resolution

(more regular pattern)

Supported by:

SLAM: Approaches

There are 2 main subtypes of SLAM algorithms:

a) Grid-based: using the division of space into small squares or cubes (pixels/voxels) of

chosen size; we then check if sensors detect anything

in a a pixel/voxel or not and create a grid or volumetric map,

b) Feature-based: extracting distinctive features from images/scans and using them to

create a landmark map.

Choice of the algorithm depends mostly on the sensors used (laser scanners often utlized

in a), cameras in b)) and the specific application requirements.

Accuracy – depending on method, sensor accuracy, site scale

and numer of revisits (loop closures); up to a few cm.

Supported by:

SLAM: Approaches

Supported by:

SLAM: Approaches

a) Grid-based SLAM

Chosen methods used in matching data from subsequent poses:

• Kalman Filters,

• Particle filters,

• Iterative Closest Points (ICP),

• Normal Distribution Transform (NDT),

• Plane fitting,

• Edge detection,

• RANdom Sample Consensus (RANSAC).

Supported by:

SLAM: Approaches

b) Feature-based SLAM

Chosen methods used in visual, feature based SLAM:

• Feature detectors:

o SIFT, SURF, BRISK, ORB, FAST, GFTT, STAR,

• Feature descriptors:

o SIFT, SURF, BRISK, ORB, BRIEF, FREAK,

• Bag of Words,

• Kalman Filters,

• Particle filters,

• RANdom Sample Consensus (RANSAC).

Supported by:

SLAM: Data types of results
Point cloud

Each point displayed

3D voxels

Cubes where anything was detected

Octree

Multiple 3D voxel models

for different resolutions

(adaptable to different

requirements)

2.5D map

Only the highest cube is kept (less disk space needed)

Supported by:

SLAM: Loop closures

Loop closure detection

• Recognizing
a previously visited place

Source: http://www.robots.ox.ac.uk/~lav/Research/Programmes/EPSRC_T24685/index.html

• Subsequent scan/image matching: 1-to-1 problem
• Checking for a possible loop closure: 1-to-all problem

• Computation complexity very quickly growing
over time

http://www.robots.ox.ac.uk/~lav/Research/Programmes/EPSRC_T24685/index.html

Supported by:

SLAM: Loop closures

Source: Create 2-D pose graph - MATLAB (mathworks.com)

Pose graph optimization

Example 2D pose graph.
Edges connecting subsequent poses in blue,

loop closure edges in red

https://www.mathworks.com/help/nav/ref/posegraph.html

Supported by:

SLAM 2D: Examples

Source: https://www.youtube.com/watch?v=tpzT2D_4LNc&feature=youtu.be

FastSLAM 2D algorithm

Feature based.
Ellipses symbolize standard
deviation of the robot’s and

landmarks’ positions.

Loop closure at the end
greatly improves precision!

https://www.youtube.com/watch?v=tpzT2D_4LNc&feature=youtu.be

Supported by:

SLAM 2D: Examples

Source: http://cristianfrincu.blogspot.com/2016/08/wiserbot-mapping-and-sensing-buildings.html

EKF SLAM 2D
Grid-based

http://cristianfrincu.blogspot.com/2016/08/wiserbot-mapping-and-sensing-buildings.html

Supported by:

SLAM 2D: Examples

EKF SLAM 2D
Grid-based

Source: https://github.com/handsomeboy/slam-1

https://github.com/handsomeboy/slam-1

Supported by:

LiDAR SLAM 3D: Examples

Source: http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works

Google's Self-Driving Car's perception system based on SLAM

http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works

Supported by:

LiDAR SLAM 3D: Examples
LeGO-LOAM 3D SLAM

3D LiDAR + IMU

Supported by:

LiDAR SLAM 3D: Examples
LeGO-LOAM 3D SLAM

3D LiDAR

Supported by:

LiDAR SLAM 3D: Examples
BLAM SLAM

3D LiDAR

Supported by:

LiDAR SLAM 3D: Examples
GICP-based Graph SLAM

3D LiDAR

Supported by:

Visual SLAM 3D: Examples

Monocular and stereo camera examples

ORB-SLAM

Supported by:

Visual SLAM 3D: Examples

Stereo camera

LSD-SLAM

Supported by:

Visual SLAM 3D: Examples

Stereo camera

RTAB-Map

Supported by:

SLAM: Further possibilites

Source:CNN-SLAM: Real-Time Dense Monocular SLAM With Learned Depth Prediction (thecvf.com)

Deep learning & SLAM metric model with object detection

https://openaccess.thecvf.com/content_cvpr_2017/papers/Tateno_CNN-SLAM_Real-Time_Dense_CVPR_2017_paper.pdf

Supported by:

SLAM in a mine

Challenges:

• Weak illumination,

• Dust,

• Rough, slippery terrain,

• Falling rocks,

• Irregular surroundings,

• Dark, obscura, narrow corridors,

• Moving people and vehicles,

• Magnetic field disturbances,

• Limited wireless network range.

Supported by:

SLAM in a mine
RTAB-Map SLAM

Depth camera

Supported by:

SLAM in a mine
GICP-based Graph SLAM

3D LiDAR

Supported by:

SLAM in a mine
GICP-based Graph SLAM

3D LiDAR

Supported by:

Summary

• Robots can use variety of sensors to acquire spatial data.

Gigabytes of highly frequently updated data can be easily gathered, but gaining

knowledge from raw data can be troublesome.

• SLAM algorithms are (for now) a suitable solution for autonomous vehicles.

However, a lot of improvements and research is needed to achieve

fully satisfying, reliable results, especially in demanding environments like

underground mines.

• Algorithms based on fusing data from different sensors have the potential to

leverage advantages of multiple methods and eliminate their weak sides. It will

be necessary to achieve reliable SLAM solution in an underground mine.

Supported by:

SLAM: Additional resources

• OpenSLAM.org

• OpenVSLAM: A Versatile Visual SLAM Framework

• The list of vision-based SLAM / Visual Odometry open source, blogs, and

papers

• Cartographer – opensource.google

https://openslam-org.github.io/
https://github.com/xdspacelab/openvslam
https://github.com/tzutalin/awesome-visual-slam
https://opensource.google/projects/cartographer

Supported by:

Thank you for your attention

