

Wrocław University of Science and Technology

Influence of random impulsive components on the effectiveness of cyclostationary analysis

Jacek Wodecki¹, Anna Michalak¹, Agnieszka Wyłomańska², Radosław Zimroz¹

¹Faculty of Geoengineering, Mining and Geology, Digital Mining Center, Wrocław University of Science and Technology, Wrocław, Poland

> ² Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, Wroclaw, Poland

THE THIRTEENTH WORKSHOP ON NONSTATIONARY SYSTEMS AND THEIR APPLICATIONS

2

Motivation

Sensor placed vertically

Sensor placed horizontally

Problem description

- CSC applied to real-life signals (of unknown distribution) fails in certain conditions.
- Authors assume that non-cyclic impact-related impulses are the issue.
- Distribution of the impacts in time and energy can be modeled with α -stable distribution.
- There are papers in existence that talk about calculating and the limitations of the sample autocorrelation for α -stable processes.
- In this work authors try to estimate the value of α below which there is a need for finding more appropriate measure of dependence (to replace autocorrelation)

4

Cyclic Spectral Coherence

Signal model description **Signal of interest** 5 2 3 5 **Gaussian noise Analyzed signal** 100 ւներ չեվ վենք լեկ ներա երաներերի, ուն արդում են իրի այնու պարտունին ներին տեղինից, կաներն են երան հերինորին, երան հե 0 0 -100 -200 2 1 3 2 3 **Alpha-stable noise** 100 10 -100

-10

0.01

0.02

0.03

0.05

0.04

5

-200

1

2

3

4

α -stable distribution

The random variable X is called α -stable if its characteristic function is defined as follows

$$\mathbb{E}[\exp i\theta X] = \begin{cases} \exp\left\{-\sigma^{\alpha}|\theta|^{\alpha}\left\{1-i\beta\operatorname{sign}(\theta)\tan\left(\pi\alpha/2\right)\right\}+i\mu\theta\right\} & \text{for } \alpha\neq1, \\ \exp\left\{-\sigma|\theta|\left\{1+i\beta\operatorname{sign}(\theta)\frac{2}{\pi}\log(|\theta|\right\}+i\mu\theta\right\} & \text{for } \alpha=1, \end{cases}$$

where the parameter $\alpha \in (0,2]$ is a stability index, $\sigma > 0$ is a scale parameter, $\beta \in [-1,1]$ is a skewness parameter, and $\mu \in \mathbb{R}$ is a shift parameter.

Signal of interest

A signal of interest (SOI) is constructed as a series of individual impulses distributed in time with a given period T. A single impulse is defined as a decaying harmonic oscillation:

 $g(t) = A \cdot \sin\left(2\pi f_c t\right) e^{-dt},$

where A is the amplitude, t is time, f_c is the center frequency in the carrier frequency domain and d is a decay coefficient for the exponential function.

CSC results

CSC quality evaluation

CSC quality coefficient is defined as follows:

$$QC_{CSC} = kurt\left(\max_{f} (CSC(f, \alpha))\right)$$

CSC quality evaluation

QC>15 -> Good 5<QC<15 -> Acceptable QC<5 -> Unacceptable

Wrocław University of Science and Technology

Conclusions

- Practical limitations of the CSC estimator have been demonstrated.
- With random impacts modeled with α-stable noise, for the values of α parameter close to 2 (down to about 1.8), CSC estimator enables detecting cyclic behaviors in the data. Below this value it starts becoming unusable.
- Described problem is an effect of not fulfilling the theoretical constraints of the elementary calculations within the CPS estimator.
- Although tempting, it is not a proper approach to use CSC for cyclic component detection in certain conditions.
- Further work assumes developing more suitable and robust measure to replace autocorrelation in the CPS estimator.

References

- Wodecki, J., Michalak, A., Wyłomańska, A., Zimroz, R.: Influence of random impulsive components on the effectiveness of cyclostationary analysis, Submitted to Gródek proceedings 2020.
- Antoni, J.: Cyclic spectral analysis in practice. Mechanical Systems and Signal Processing 21 (2), 597–630 (2007),
- Borghesani, P., Antoni, J.: Cs2 analysis in presence of non-gaussian back-ground noise-effect on traditional estimators and resilience of log-envelope indicators. Mechanical Systems and Signal Processing 90, 378–398 (2017).
- Weron, A., Weron, R.: Computer simulation of Levy α-stable variables and processes. In: Chaos The interplay between stochastic and deterministic behaviour, pp. 379–392. Springer (1995)
- **Cohen, J., Resnick, S., Samorodnitsky, G.:** Sample correlations of Infinite variance time series models: an empirical and theoretical study. International Journal of Stochastic Analysis 11 (3), 255–282 (1998).
- Kleppner, D., Kolenkow, R.: An introduction to mechanics. Cambridge University Press (2014)
- Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. New York: Chapman & Hall (1994)
- Wodecki, J., Kruczek, P., Bartkowiak, A., Zimroz, R., Wyłomańska, A.: Novel method of informative frequency band selection for vibration signal using nonnegative matrix factorization of spectrogram matrix. Mechanical Systems and Signal Processing 130, 585–596 (2019)
- Wodecki, J., Michalak, A., Zimroz, R., Barszcz, T., Wyłomańska, A.: Impulsive source separation using combination of nonnegative matrix factorization of bi-frequency map, spatial denoising and monte carlo simulation. Mechanical Systems and Signal Processing 127, 89–101 (2019)
- Żak, G., Wyłomańska, A., Zimroz, R.: Periodically impulsive behavior detection in noisy observation based on generalized fractional order dependency map. Applied Acoustics 144, 31–39 (2019)

Wrocław University of Science and Technology

Operational Monitoring of Mineral Crushing Machinery

Thank you for your attention

Framework Programme for Research and Innovation

14