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Agendad

e Periodically correlated random seqgquences,
e a-stable distribution,

e a-stable cyclostationary random sequences,
e Generalised spectra coherence

e Application to simulated data
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Stationary

Let us consider a random sequence {X;}. It is called strictly stafionary if

for each n € Z, times tq,...,t,, € Z and Borel sets A4, ..., 4,, the following

holds:

Pt1+1»---»tn+1(A1’ ...,An) — P(Xt1+1 S Al’ ""th+1 S An) — Ptl,...,tn(All ,An)

A second order random sequence X; € L*(2,F,P) with t € Z is called

weakly stationary, if for every s,t € Z :
m(t) = m, Cov(X,,X;) = R(s —t)
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Periodically Correlated

Let us consider a random sequence {X;}. It is called strictly
periodically correlated with period T if for each n € Z, times t4, ..., t, €

7. and Borel sets A4, ..., A,, The following holds:

Pityirmtner) A o An) = Py ey (A1, o Ag)

A second order random sequence X; € L*(Q,F,P) with t€Z and
period T is called periodically correlated, if for every s,t € Z
m(t) = m(t +T), Cov(Xs, X¢) = Cov(Xsyr, Xey1)
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Generalized spectra coherenc

Let consider PC time series {X;},t € Z with period T € N. Then spectral correlation at

cycle frequency e is defined as

S y(f, €) = Z R (T)e™ 7.

T=—00
And Generalized spectral coherence is

S('N)(f €)|2
[yx(f. eI = lim SNV +e/2,008M(f - €/2,0)

where
00 N/2
S;N)(f’ €) = Z Z Ry(1, T)e—lzﬂ'f‘{'e—lzj’réf.
r=—00 1=—N/2
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Periodically Correlated — Example |

Let {Z;} be the weakly stationary random sequence, where t € Z,

EZ, =m and Var(Z,) = 0% < . Moreover, f(t) f:Z - Ris a periodic

function with period T. Then, the random sequence {X,;} defined as:

Xe = f(®)Z,
IS the second-order PC time series.
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Periodically Correlated — Example 2

The second-order PARMA(p,q) time series is defined as follows

Xe—p1(ODXe—q — = (D)X = &+ 01(0)E—q + -+ 0,(0)E(E — q),
where t € Z, {&} Is the random sequence constitutes sample of i.i.d.

random variables with mean 0 and variance ¢? < «. The parameters

sequence {¢;(t),i = 1,..,p} and {6;(t),j = 1, ..., q} are periodic with the

same period T € N, thus for every t holds:

¢$i(t) =it +T),0;(t) =06;(t+T).
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Stable distribution

Let X be a random variable, it follows the symetric a-stable distribution

(X~SaS(a,0)) with scale parameter ¢ and stability index a if the

characteristic function of X is given by:
¢x(t) = Eexp(itX) = exp(—a“|[t]?)
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Stable distribution

Let X be a random variable, it follows the symetric a-stable distribution

(X~SaS(a,0)) with scale parameter ¢ and stability index a if the

characteristic function of X is given by:
¢x(t) = Eexp(itX) = exp(—a“|[t]?)

« There is no closed form of the probability density function;
 Fora = 2itis a Gaussian distribution;

« The variance is infinite for a < 2;
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Alternative measures of dependency —
codifference

Let consider time series {X;},t € Z such that for each t X; has infinite
divisible distribution then the autocodifference for lag k is defined as

CD(Xt' Xt+k)
= log(Eexp(i(Xy — X¢1x))) — log(Eexp(iX;)) — log(Eexp(—iX;ix))

It can be rewritten using characteristic function

Px—xppp (1) )
AN EY

CD(X¢, Xeqr) = 108(
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Alternative measures of dependency —
covariation

Let consider time series {X;},t € Z such that for each t X,~SaS(«a, o)

and a € (1,2] then the autocovariation for lag k is defined as:

[Xe, Xeviela :f 5152<a_1>r(d5);
S

2

Where S, is the unit sphere in R?, T is the spectral measure of random

vector (X, X;+) and z<P~ = |p|sign(z).
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Alternative measures of dependency —
covariation

Using covaration the norm can be defined for X, ~S5aS(a, oy,):

1
IXelle = ([Xe Xelg)a = Ox,

Let consider time series {X;},t € Z such that for each t X;~SaS(a, o).

ThenforallkeZaoand1<p<a:

-1
2k vy = EXeXSh X Xekla
' E[Xetxl? 1 Xerrella
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Cyclostationary a-stable

Let consider time series {X;},t € Z such that for each t X;~SaS(a,a) with
stability index a > 1. It is a-stable weakly stationary when

Vt, k € Z the following holds:
EX; =m, A X, Xeri) = A Xer 1 Xetr14k)

Let consider time series {X;},t € Z such that for each t X,~SaS(«a, o) with
stability index a > 1. It is a-stable cyclostationary with period T € N when

Vt,s € Z the following holds:
IE:Xt — II5:Xt+Ti A(Xt+TJ XS+T) — )]'(Xt'XS)
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Cyclic autocovariation

Let consider a-stable cyclostationary with period T € N time series {X;},t € Z such that

for each t X;~SaS(a, o) with stability index a > 1. Then cyclic autocovariation is defined

ON

1 N/2
¢ . —i2me
A5(0) = lim —— ZN]/ AX; X2

Where € € A and A4 is countable set, not depending on 7, of possible cycle frequencies e.
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Generalized spectra coherence

Let consider a-stable cyclostationary time series {X;} with period T € N,t € Z such that

foreach t X;~SaS(a, o) with stability index a > 1. Then spectral covariation is defined as

SCVx(f,€e) = Z /ISF{(T)E’_EZH‘)&T_

T=—00

And Generalized spectral coherence is

SCVM(f. o)
o = i o POl
N—eo SCVL(f +€/2,0)SCV(f — €/2,0)

where
00 N/2
SCVY'(fre = D D AKX Xppe e
T=—00 1=—N/2
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Infegrated SCV

1/2 N/2
[ scvasadr - X)e
~1/2 N—ooo N =N/
Indeed:
1/2 /2 & /2 ‘ - sin(7zr)
SCVx(f,e)d f A5 (T)e” it d A5 (1) f eI f = A5 (1) :
.[1/2 K e = 1/2 T_ o /= TZOO X 1/2 T;w x T

If T € Z, then (sinnt)/(nT) = 0. and therefore one has:

" 7 )
A = l AX,. X, )e <7
f SOV adf = 10 = lim £ ;/2 (X, X,)e
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Simulation study - signal

cyclostationary process related to faulty bearings (SOI);

non-cyclic, high amplitude randomly occurring impulsive excitations
related to oversized pieces of copper ore faling down into the crusher; it
Is non-Gaussian noise;

Gaussian noise - related to general measurement noise.

s(t) = S Ol + noise,

noise = non — Gaussian — noise + Gaussian — noise.
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Simulation study - signal

SOl is a cyclic pulse train with cyclic frequency equal to 30Hz and carrier frequency band equal to 2-3kHz.

The amplitude of the cyclic impulses is equal to 8.

The Gaussian noise has u =0 and varionce equal to 1.5. Additionally, the non-Gaussian a-stable noise is
added with ¢« = 1.8 and ¢ = 0.8.
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f frequency [Hz]

Simulation study — bi-frequency maps

The cyclic impulses are barely visible and are highly contaminated in SC

The level of the noise for GSC is significantly smaller than for the spectral coherence.
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Simulation study — rafio
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Conclusions

e For the a-stable sequences the covariance is not finite,

e The novel definition of generalised spectral coherence was

proposed,

e The covariation is appropriate measure of dependence for a-

stable random sequences,

 The generalized specira coherence is more appropriate for a-

stable random sequences.
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