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Agenda
• Periodically correlated random sequences,

• 𝛼-stable distribution,

• 𝛼-stable cyclostationary random sequences,
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• Application to simulated data
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Let us consider a random sequence {𝑋𝑡}. It is called strictly stationary if

for each 𝑛 ∈ ℤ, times 𝑡1, … , 𝑡𝑛 ∈ ℤ and Borel sets 𝐴1, … , 𝐴𝑛 the following

holds:

𝑃𝑡1+1,…,𝑡𝑛+1 𝐴1, … , 𝐴𝑛 = 𝑃 𝑋𝑡1+1 ∈ 𝐴1, … , 𝑋𝑡𝑛+1 ∈ 𝐴𝑛 = 𝑃𝑡1,…,𝑡𝑛 𝐴1, … , 𝐴𝑛

A second order random sequence 𝑋𝑡 ∈ 𝐿2(𝛺, ℱ, 𝑃) with 𝑡 ∈ ℤ is called

weakly stationary, if for every 𝑠, 𝑡 ∈ ℤ :

𝑚 𝑡 = 𝑚, Cov 𝑋𝑠, 𝑋𝑡 = 𝑅(𝑠 − 𝑡)

Stationary
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Let us consider a random sequence {𝑋𝑡} . It is called strictly

periodically correlated with period 𝑇 if for each 𝑛 ∈ ℤ, times 𝑡1, … , 𝑡𝑛 ∈

ℤ and Borel sets 𝐴1, … , 𝐴𝑛 the following holds:

𝑃 𝑡1+𝑇,…,𝑡𝑛+𝑇 𝐴1, …𝐴𝑛 = 𝑃 𝑡1,…,𝑡𝑛 𝐴1, …𝐴𝑛

A second order random sequence Xt ∈ L2(Ω, ℱ, P) with 𝑡 ∈ ℤ and

period 𝑇 is called periodically correlated, if for every s, 𝑡 ∈ ℤ :

𝑚 𝑡 = 𝑚(𝑡 + 𝑇), Cov 𝑋𝑠, 𝑋𝑡 = Cov(𝑋𝑠+𝑇 , 𝑋𝑡+𝑇)

Periodically Correlated
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Let consider PC time series 𝑋𝑡 , 𝑡 ∈ ℤ with period 𝑇 ∈ ℕ. Then spectral correlation at

cycle frequency 𝜖 is defined as

Generalized spectra coherenc

And Generalized spectral coherence is

where
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Let 𝑍𝑡 be the weakly stationary random sequence, where 𝑡 ∈ ℤ,

𝔼𝑍𝑡 = 𝑚 and Var 𝑍𝑡 = 𝜎2 < ∞. Moreover, 𝑓(𝑡) 𝑓: ℤ → ℝ is a periodic

function with period 𝑇. Then, the random sequence 𝑋𝑡 defined as:

𝑋𝑡 = 𝑓 𝑡 𝑍𝑡

is the second-order PC time series.

Periodically Correlated – Example 1



7

The second-order PARMA(p,q) time series is defined as follows

𝑋𝑡 − 𝜙1 𝑡 𝑋𝑡−1 −⋯− 𝜙𝑝 𝑡 𝑋𝑡−𝑝 = 𝜉𝑡 + 𝜃1 𝑡 𝜉𝑡−1 +⋯+ 𝜃𝑞 𝑡 𝜉 𝑡 − 𝑞 ,

where 𝑡 ∈ ℤ, {𝜉𝑡} is the random sequence constitutes sample of i.i.d.

random variables with mean 0 and variance 𝜎2 < ∞. The parameters

sequence 𝜙𝑖 𝑡 , 𝑖 = 1,… , 𝑝 and 𝜃𝑗 𝑡 , 𝑗 = 1,… , 𝑞 are periodic with the

same period 𝑇 ∈ ℕ, thus for every t holds:

𝜙𝑖 𝑡 = 𝜙𝑖 𝑡 + 𝑇 , 𝜃𝑖 𝑡 = 𝜃𝑖 𝑡 + 𝑇 .

Periodically Correlated – Example 2
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Let 𝑋 be a random variable, it follows the symetric 𝛼-stable distribution

(𝑋~𝑆𝛼𝑆(𝛼, 𝜎)) with scale parameter 𝜎 and stability index 𝛼 if the

characteristic function of 𝑋 is given by:

𝜙𝑋 𝑡 = 𝔼exp 𝑖𝑡𝑋 = exp(−𝜎𝛼 𝑡 𝛼)

Stable distribution

• There is no closed form of the probability density function;

• For 𝛼 = 2 it is a Gaussian distribution;

• The variance is infinite for 𝛼 < 2;
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Let consider time series 𝑋𝑡 , 𝑡 ∈ ℤ such that for each 𝑡 𝑋𝑡 has infinite

divisible distribution then the autocodifference for lag 𝑘 is defined as

CD 𝑋𝑡 , 𝑋𝑡+𝑘

= log(𝔼exp 𝑖 𝑋𝑡 − 𝑋𝑡+𝑘 ) − log(𝔼exp 𝑖𝑋𝑡 ) − log(𝔼exp(−𝑖𝑋𝑡+𝑘))

It can be rewritten using characteristic function

CD 𝑋𝑡 , 𝑋𝑡+𝑘 = log
𝜙𝑋𝑡−𝑋𝑡+𝑘(1)

𝜙𝑋𝑡 1 𝜙−𝑋𝑡+𝑘(1)

Alternative measures of dependency –

codifference
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Let consider time series 𝑋𝑡 , 𝑡 ∈ ℤ such that for each 𝑡 𝑋𝑡~𝑆𝛼𝑆 𝛼, 𝜎

and 𝛼 ∈ (1,2] then the autocovariation for lag 𝑘 is defined as:

𝑋𝑡 , 𝑋𝑡+𝑘 𝛼 = න
𝑆2

𝑠1𝑠2
<𝛼−1>Γ 𝑑𝑠 ,

Where 𝑆2 is the unit sphere in ℝ2, Γ is the spectral measure of random

vector (𝑋𝑡 , 𝑋𝑡+𝑘) and 𝑧<𝑝> = 𝑝 sign 𝑧 .

Alternative measures of dependency –

covariation 
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Using covaration the norm can be defined for 𝑋𝑡~𝑆𝛼𝑆(𝛼, 𝜎𝑋𝑡):

𝑋𝑡 𝛼 = 𝑋𝑡 , 𝑋𝑡 𝛼

1
𝛼 = 𝜎𝑋𝑡

Let consider time series 𝑋𝑡 , 𝑡 ∈ ℤ such that for each 𝑡 𝑋𝑡~𝑆𝛼𝑆 𝛼, 𝜎 .

Then for all 𝑘 ∈ ℤ and 1 ≤ 𝑝 < 𝛼 :

𝜆 𝑋, 𝑌 =
𝔼𝑋𝑡𝑋𝑡+𝑘

<𝑝−1>

𝔼 𝑋𝑡+𝑘 𝑝
=

𝑋𝑡 , 𝑋𝑡+𝑘 𝛼

𝑋𝑡+𝑘 𝛼
𝛼

Alternative measures of dependency –

covariation 
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Let consider time series 𝑋𝑡 , 𝑡 ∈ ℤ such that for each 𝑡 𝑋𝑡~𝑆𝛼𝑆 𝛼, 𝜎 with

stability index 𝛼 > 1. It is 𝛼-stable weakly stationary when

∀𝑡, 𝑘 ∈ ℤ the following holds:

𝔼𝑋𝑡 = 𝑚, 𝜆 𝑋𝑡, 𝑋𝑡+𝑘 = 𝜆(𝑋t+1, 𝑋𝑡+1+𝑘)

Let consider time series 𝑋𝑡 , 𝑡 ∈ ℤ such that for each 𝑡 𝑋𝑡~𝑆𝛼𝑆 𝛼, 𝜎 with

stability index 𝛼 > 1. It is 𝛼-stable cyclostationary with period 𝑇 ∈ ℕ when

∀𝑡, 𝑠 ∈ ℤ the following holds:

𝔼𝑋𝑡 = 𝔼𝑋𝑡+𝑇 , 𝜆 𝑋𝑡+𝑇 , 𝑋𝑠+𝑇 = 𝜆(𝑋𝑡, 𝑋𝑠)

Cyclostationary 𝛼-stable 
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Let consider 𝛼-stable cyclostationary with period 𝑇 ∈ ℕ time series 𝑋𝑡 , 𝑡 ∈ ℤ such that

for each 𝑡 𝑋𝑡~𝑆𝛼𝑆 𝛼, 𝜎 with stability index 𝛼 > 1. Then cyclic autocovariation is defined

as

Cyclic autocovariation

Where 𝜖 ∈ 𝐴 and 𝐴 is countable set, not depending on 𝜏, of possible cycle frequencies 𝜖.
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Let consider 𝛼-stable cyclostationary time series 𝑋𝑡 with period 𝑇 ∈ ℕ, 𝑡 ∈ ℤ such that

for each 𝑡 𝑋𝑡~𝑆𝛼𝑆 𝛼, 𝜎 with stability index 𝛼 > 1. Then spectral covariation is defined as

Generalized spectra coherence

And Generalized spectral coherence is

where
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An equivalent to the envelope spectrum can be defined

Integrated SCV
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• cyclostationary process related to faulty bearings (SOI);

• non-cyclic, high amplitude randomly occurring impulsive excitations

related to oversized pieces of copper ore falling down into the crusher; it

is non-Gaussian noise;

• Gaussian noise - related to general measurement noise.

Simulation study - signal
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Simulation study - signal
SOI is a cyclic pulse train with cyclic frequency equal to 30Hz and carrier frequency band equal to 2-3kHz.

The amplitude of the cyclic impulses is equal to 8.

The Gaussian noise has 𝜇 = 0 and variance equal to 1.5. Additionally, the non-Gaussian 𝛼-stable noise is

added with 𝛼 = 1.8 and 𝜎 = 0.8.
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Simulation study – bi-frequency maps

• The cyclic impulses are barely visible and are highly contaminated in SC

• The level of the noise for GSC is significantly smaller than for the spectral coherence.
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Simulation study – ratio
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• For the 𝛼-stable sequences the covariance is not finite,

• The novel definition of generalised spectral coherence was 

proposed,

• The covariation is appropriate measure of dependence for  𝛼-

stable random sequences,

• The generalized spectra coherence is more appropriate for  𝛼-

stable random sequences.

Conclusions


