Generalized Spectral Coherence for cyclostationary signals with α -stable distribution

Piotr Kruczek, Agnieszka Wyłomańska

Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology

Radosław Zimroz

Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology

Jerome Antoni

Laboratoire Vibrations Acoustique, University of Lyon, INSA-Lyon

Wrocław University of Science and Technology

09.02.2021

Agenda

- Periodically correlated random sequences,
- α -stable distribution,
- α -stable cyclostationary random sequences,
- Generalised spectra coherence
- Application to simulated data

Stationary

Let us consider a random sequence $\{X_t\}$. It is called strictly stationary if for each $n \in \mathbb{Z}$, times $t_1, ..., t_n \in \mathbb{Z}$ and Borel sets $A_1, ..., A_n$ the following holds:

$$P_{t_{1+1},\dots,t_{n+1}}(A_1,\dots,A_n) = P(X_{t_{1+1}} \in A_1,\dots,X_{t_{n+1}} \in A_n) = P_{t_1,\dots,t_n}(A_1,\dots,A_n)$$

A second order random sequence $X_t \in L^2(\Omega, \mathcal{F}, P)$ with $t \in \mathbb{Z}$ is called weakly stationary, if for every $s, t \in \mathbb{Z}$:

m(t) = m, $Cov(X_s, X_t) = R(s - t)$

Periodically Correlated

Let us consider a random sequence $\{X_t\}$. It is called strictly periodically correlated with period *T* if for each $n \in \mathbb{Z}$, times $t_1, \ldots, t_n \in \mathbb{Z}$ and Borel sets A_1, \ldots, A_n the following holds:

$$P_{(t_{1+T},...,t_{n+T})}(A_{1},...A_{n}) = P_{(t_{1},...,t_{n})}(A_{1},...A_{n})$$

A second order random sequence $X_t \in L^2(\Omega, \mathcal{F}, P)$ with $t \in \mathbb{Z}$ and period T is called periodically correlated, if for every $s, t \in \mathbb{Z}$: $m(t) = m(t + T), \quad Cov(X_s, X_t) = Cov(X_{s+T}, X_{t+T})$

Generalized spectra coherenc

Let consider PC time series $\{X_t\}, t \in \mathbb{Z}$ with period $T \in \mathbb{N}$. Then spectral correlation at cycle frequency ϵ is defined as

$$S_X(f,\epsilon) = \sum_{\tau=-\infty}^{\infty} R_X^{\epsilon}(\tau) e^{-i2\pi f\tau}.$$

And Generalized spectral coherence is

$$\gamma_X(f,\epsilon)|^2 = \lim_{N \to \infty} \frac{\left|S_X^{(N)}(f,\epsilon)\right|^2}{S_X^{(N)}(f+\epsilon/2,0)S_X^{(N)}(f-\epsilon/2,0)},$$

where

$$S_X^{(N)}(f,\epsilon) = \sum_{\tau=-\infty}^{\infty} \sum_{t=-N/2}^{N/2} R_X(t,\tau) e^{-i2\pi f \tau} e^{-i2\pi \epsilon t}.$$

Periodically Correlated – Example 1

Let $\{Z_t\}$ be the weakly stationary random sequence, where $t \in \mathbb{Z}$, $\mathbb{E}Z_t = m$ and $Var(Z_t) = \sigma^2 < \infty$. Moreover, f(t) $f:\mathbb{Z} \to \mathbb{R}$ is a periodic function with period T. Then, the random sequence $\{X_t\}$ defined as:

 $X_t = f(t)Z_t$

is the second-order PC time series.

Periodically Correlated – Example 2

The second-order PARMA(p,q) time series is defined as follows

 $X_t - \phi_1(t) X_{t-1} - \dots - \phi_p(t) X_{t-p} = \xi_t + \theta_1(t) \xi_{t-1} + \dots + \theta_q(t) \xi(t-q),$

where $t \in \mathbb{Z}$, $\{\xi_t\}$ is the random sequence constitutes sample of i.i.d. random variables with mean 0 and variance $\sigma^2 < \infty$. The parameters sequence $\{\phi_i(t), i = 1, ..., p\}$ and $\{\theta_j(t), j = 1, ..., q\}$ are periodic with the same period $T \in \mathbb{N}$, thus for every t holds:

$$\phi_i(t) = \phi_i(t+T), \theta_i(t) = \theta_i(t+T).$$

Stable distribution

Let X be a random variable, it follows the symetric α -stable distribution $(X \sim S\alpha S(\alpha, \sigma))$ with scale parameter σ and stability index α if the characteristic function of X is given by:

 $\phi_X(t) = \mathbb{E}\exp(itX) = \exp(-\sigma^{\alpha}|t|^{\alpha})$

• There is no closed form of the probability density function;

- For $\alpha = 2$ it is a Gaussian distribution;
- The variance is infinite for $\alpha < 2$;

Stable distribution

Let X be a random variable, it follows the symetric α -stable distribution $(X \sim S\alpha S(\alpha, \sigma))$ with scale parameter σ and stability index α if the characteristic function of X is given by:

 $\phi_X(t) = \mathbb{E}\exp(itX) = \exp(-\sigma^{\alpha}|t|^{\alpha})$

- There is no closed form of the probability density function;
- For $\alpha = 2$ it is a Gaussian distribution;
- The variance is infinite for $\alpha < 2$;

Alternative measures of dependency – codifference

Let consider time series $\{X_t\}, t \in \mathbb{Z}$ such that for each $t X_t$ has infinite divisible distribution then the autocodifference for lag k is defined as $CD(X_t, X_{t+k})$ $= \log(\mathbb{E}\exp(i(X_t - X_{t+k}))) - \log(\mathbb{E}\exp(iX_t)) - \log(\mathbb{E}\exp(-iX_{t+k}))$

It can be rewritten using characteristic function

$$CD(X_t, X_{t+k}) = \log\left(\frac{\phi_{X_t - X_{t+k}}(1)}{\phi_{X_t}(1)\phi_{-X_{t+k}}(1)}\right)$$

Alternative measures of dependency – covariation

Let consider time series $\{X_t\}, t \in \mathbb{Z}$ such that for each $t X_t \sim S\alpha S(\alpha, \sigma)$ and $\alpha \in (1,2]$ then the autocovariation for lag k is defined as:

$$[X_t, X_{t+k}]_{\alpha} = \int_{S_2} s_1 s_2^{<\alpha - 1>} \Gamma(ds),$$

Where S_2 is the unit sphere in \mathbb{R}^2 , Γ is the spectral measure of random vector (X_t, X_{t+k}) and $z^{} = |p| \operatorname{sign}(z)$.

Alternative measures of dependency – covariation

Using covaration the norm can be defined for $X_t \sim S\alpha S(\alpha, \sigma_{X_t})$:

 $\|X_t\|_{\alpha} = ([X_t, X_t]_{\alpha})^{\frac{1}{\alpha}} = \sigma_{X_t}$

Let consider time series $\{X_t\}, t \in \mathbb{Z}$ such that for each $t X_t \sim S\alpha S(\alpha, \sigma)$. Then for all $k \in \mathbb{Z}$ and $1 \le p < \alpha$:

$$\lambda(X,Y) = \frac{\mathbb{E}X_t X_{t+k}^{\langle p-1 \rangle}}{\mathbb{E}|X_{t+k}|^p} = \frac{[X_t, X_{t+k}]_{\alpha}}{\|X_{t+k}\|_{\alpha}^{\alpha}}$$

Cyclostationary α -stable

Let consider time series $\{X_t\}, t \in \mathbb{Z}$ such that for each $t X_t \sim S\alpha S(\alpha, \sigma)$ with stability index $\alpha > 1$. It is α -stable weakly stationary when $\forall t, k \in \mathbb{Z}$ the following holds:

$$\mathbb{E}X_t = m, \qquad \lambda(X_t, X_{t+k}) = \lambda(X_{t+1}, X_{t+1+k})$$

Let consider time series $\{X_t\}, t \in \mathbb{Z}$ such that for each $t X_t \sim S\alpha S(\alpha, \sigma)$ with stability index $\alpha > 1$. It is α -stable cyclostationary with period $T \in \mathbb{N}$ when $\forall t, s \in \mathbb{Z}$ the following holds:

$$\mathbb{E}X_t = \mathbb{E}X_{t+T}, \qquad \lambda(X_{t+T}, X_{s+T}) = \lambda(X_t, X_s)$$

Cyclic autocovariation

Let consider α -stable cyclostationary with period $T \in \mathbb{N}$ time series $\{X_t\}, t \in \mathbb{Z}$ such that for each $t X_t \sim S\alpha S(\alpha, \sigma)$ with stability index $\alpha > 1$. Then cyclic autocovariation is defined as

$$\lambda^{\epsilon}_X(\tau) = \lim_{N \to \infty} \frac{1}{N+1} \sum_{t=-N/2}^{N/2} \lambda(X_t, X_{t+\tau}) e^{-i2\pi\epsilon t}$$

Where $\epsilon \in A$ and A is countable set, not depending on τ , of possible cycle frequencies ϵ .

Generalized spectra coherence

Let consider α -stable cyclostationary time series $\{X_t\}$ with period $T \in \mathbb{N}, t \in \mathbb{Z}$ such that for each $t X_t \sim S\alpha S(\alpha, \sigma)$ with stability index $\alpha > 1$. Then spectral covariation is defined as

$$SCV_X(f,\epsilon) = \sum_{\tau=-\infty}^{\infty} \lambda_X^{\epsilon}(\tau) e^{-i2\pi f \cdot \tau}$$

And Generalized spectral coherence is

$$\left|\gamma_X^{\text{CV}}(f,\epsilon)\right|^2 = \lim_{N \to \infty} \frac{\left|\text{SCV}_X^{(N)}(f,\epsilon)\right|^2}{\text{SCV}_X^{(N)}(f+\epsilon/2,0)\,\text{SCV}_X^{(N)}(f-\epsilon/2,0)},$$

where

$$\mathrm{SCV}_X^{(N)}(f,\epsilon) = \sum_{\tau=-\infty}^{\infty} \sum_{t=-N/2}^{N/2} \lambda(X_t, X_{t+\tau}) e^{-i2\pi f\tau} e^{-i2\pi\epsilon t}$$

Integrated SCV

An equivalent to the envelope spectrum can be defined

$$\int_{-1/2}^{1/2} S \, C V_X(f,\epsilon) df = \lim_{N \to \infty} \frac{1}{N+1} \sum_{t=-N/2}^{N/2} \lambda(X_t, X_t) e^{-i2\pi\epsilon t}.$$

Indeed:

$$\int_{-1/2}^{1/2} S \, C V_X(f,\epsilon) df = \int_{-1/2}^{1/2} \sum_{\tau=-\infty}^{\infty} \lambda_X^{\epsilon}(\tau) e^{-i2\pi f \tau} df = \sum_{\tau=-\infty}^{\infty} \lambda_X^{\epsilon}(\tau) \int_{-1/2}^{1/2} e^{-i2\pi f \tau} df = \sum_{\tau=-\infty}^{\infty} \lambda_X^{\epsilon}(\tau) \frac{\sin(\pi \tau)}{\pi \tau}.$$

If $\tau \in \mathbb{Z}$, then $(\sin \pi \tau)/(\pi \tau) = \delta_{\tau,0}$ and therefore one has:

$$\int_{-1/2}^{1/2} S \, C V_X(f,\epsilon) df = \lambda_X^{\epsilon}(0) = \lim_{N \to \infty} \frac{1}{N+1} \sum_{t=-N/2}^{N/2} \lambda(X_t, X_t) e^{-i2\pi\epsilon t}$$

Simulation study - signal

- cyclostationary process related to faulty bearings (SOI);
- non-cyclic, high amplitude randomly occurring impulsive excitations related to oversized pieces of copper ore falling down into the crusher; it is non-Gaussian noise;
- Gaussian noise related to general measurement noise.

s(t) = SOI + noise,

noise = non - Gaussian - noise + Gaussian - noise.

Simulation study - signal

SOI is a cyclic pulse train with cyclic frequency equal to 30Hz and carrier frequency band equal to 2-3kHz. The amplitude of the cyclic impulses is equal to 8.

The Gaussian noise has $\mu = 0$ and variance equal to 1.5. Additionally, the non-Gaussian α -stable noise is added with $\alpha = 1.8$ and $\sigma = 0.8$.

Simulation study – bi-frequency maps

- The cyclic impulses are barely visible and are highly contaminated in SC
- The level of the noise for GSC is significantly smaller than for the spectral coherence.

Wrocław University of Science and Technology

Simulation study – ratio

Conclusions

- For the α -stable sequences the covariance is not finite,
- The novel definition of generalised spectral coherence was proposed,
- The covariation is appropriate measure of dependence for α -stable random sequences,
- The generalized spectra coherence is more appropriate for α -stable random sequences.

