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Highlights

We will present recent developments related to signal processing for local damage
detection in bearings and gearboxes with focus on heavy duty mining mechanical
systems. We will address following issues :

Why local damage? - still hot topic for condition monitoring community.

State of the art - focus on heavy duty industry perspective.

Challenges - T-V Load/speed conditions, non-Gaussian noise, multiple damage,
mixture of various sources, poor SNR.

Recent solutions — cyclo-stationary analysis in presence of non-Gaussian noise,
optimal filter design for SOI extraction, source separation, de-noising.

Methods - alternative dependence measures, robust statistics, statistical modelling,
stochastic processes, Non-Negative Matrix Factorisation.

Future - inspection robots, acoustic signals.

Each approach presented in the talk will touch objects, their specific design and
operational factors, math background for proposed solutions and finally results
obtained for real data from industry.
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Our vision: Basic science with Engineering applications
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key issues in Condition Monitoring of local damage in gears/bearings

* Understand the object, its design, technological process, sources of
vibration, physical model of observed signal

e Use appropriate mathematical tools to analyse signal structure
 Describe (model) the signal in language of stochastic processes
» Extract features — impulsiveness and/or periodicity

* Filter design, SOI extraction, sources separation
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key issues in Condition Monitoring of local damage in gears/bearings
Understand the object, its design, technological process, sources of
vibration, physical model of observed signal
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key issues in Condition Monitoring of local damage in gears/bearings
Understand the object, its design, technological process, sources of
vibration, physical model of observed signal ““_—i:_m
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Understand the object, its design, technological process, sources of
vibration, physical model of observed signal

Highly nonstationary signal, poor SNR, nonGaussian noise, T-V load
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Recent solutions — cyclostationary analysis in presence of non-Gaussian
noise, optimal filter design for SOI extraction, source separation, de-noising.

Signal of Interest is impulsive and cyclic (periodic)

® |n presence of Gaussian noise — kurtosis based approaches are great
to detect impulsive component in noisy observation!

® However, there are also other statistics that could be used. They
could be better in some cases!

® C(yclostationarity detection is based on autocovariance measure
® |n case of non-Gaussian noise — it should NOT be used!
® Alternative measures are needed!

® Signal of Interest is impulsive and cyclic (periodic) => why not use
these properties together? (concept of Extended Infogram)
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Use cases presentation

Robust statistics, statistical modelling, stochastic processes for non-
Gaussian signal processing (band selection, filtering, cycle detection)

Measures of dependences for band selection and filter design for SOI
extraction in presence of non-Gaussian noise — bearings damage detection in
crusher

Novel cyclo-stationary analysis in presence of non-Gaussian noise —
bearings damage detection in crusher

Non-Negative Matrix Factorisation for source separation

Fusion of time and frequency domains — Concept of Extended Infogram for
impulsive signals
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Use cases presentation

Robust statistics, statistical modelling, stochastic processes for non-
Gaussian signal processing (band selection, filtering, cycle detection)

J Obuchowski, A Wytomanska, R Zimroz

Selection of informative frequency band in local damage detection in rotating machinery

Mechanical Systems and Signal Processing 48 (1-2), 138-152

A Wylomanska, G Zak, P Kruczek, R Zimroz Application of tempered stable distribution for selection of
optimal frequency band in gearbox local damage detection Applied Acoustics 128, 14-22

G Zak, A Wylomanska, R Zimroz

Periodically impulsive behavior detection in noisy observation based on generalized fractional order dependency
map Applied Acoustics 144, 31-39

G Zak, M Teuerle, A Wylomanska, R Zimroz

Measures of dependence for-stable distributed processes and its application to diagnostics of local damage in
presence of impulsive noise Shock and Vibration 2017

G Zak, A Wylomanska, R Zimroz
Local damage detection method based on distribution distances applied to time-frequency map of vibration
signal IEEE Transactions on Industry Applications 54 (5), 4091-4103
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Use appropriate mathematical tools to analyse signal structure

Input signal
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Signal processing perspective

Acc [mis?)

Real signal Spectrogram
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New approaches — a-stable distribution —based methods

The class of o« — stable distributions is known as an extension

of the classical Gaussian distribution.

One of the distribution’s parameters is the stability index
« € (0,2], which indicates the distance from the Gaussian
distribution.

This parameter indicates how impulsive is the distribution.

For the o« = 2 the o — distribution simplifies to the Gaussian
distribution with some parameters ji, 0. If the a tends to 0
then the examined distribution becomes more impulsive (the

values of the outliers significantly increase).

——
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New approaches — a-stable distribution —based methods

The o — stable distribution is defined by the characteristic

function, which is as follows:

| [ o—0°16]°{1—iBsign(6) tan(ma/2}+ind o £ 1.
Elexp i0X] = ¢x(0) =

e—o|9|{1—|—i,ﬁsign(9)% Iog(|¢9|}—|—iu6” == i,

\

The parameters 0 > 0, § € [—1,1], and p € R are the scale,

skeweness and shift parameters respectively.
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New approaches — a-stable distribution —based methods
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Use cases presentation

Robust statistics, statistical modelling, stochastic processes for non-
Gaussian signal processing (band selection, filtering, cycle detection)

conditional variance statistics
for informative band selection

J Hebda-Sobkowicz, R Zimroz, M Pitera, A Wylomanska

Informative frequency band selection in the presence of non-Gaussian noise—a novel approach based
on the conditional variance statistic with application to bearing fault diagnosis
Mechanical Systems and Signal Processing 145, 106971
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20-60-20 rule for the standard normal distribution
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Figure 1: Pdl of the standard normal distribution with marked partitions corresponding to the 20-60-20 rule.

Partitioning into 7 subsets for the standard normal distribution
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Figure 3: Pdf function of the standard normal distribution

with a marked partition (7 subsets).
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New approaches — conditional variance statistics -based
methods

@ It has been shown that for any population that can be
described by a multidimensional normal vector, this fixed ratio
leads to a global equilibrium state and we have:

2 = o2 = o3,
O‘% = Var(X|X & qO,z), 0%4 = Var(X\qo,g & X < qO_g)
02R = Var(X|qos < X).

@ Based on the 20/60/20 rule the test for the Gaussianity was
proposed, where the test statistic was defined as:

£9  md A2 A2
o — 0 0n — 0
C3=p‘/_N(LA2M+ RA2 M>.
o o
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New approaches — conditional variance statistics -based
methods

The conditional variance statistic for the bearing fault diagnosis is
defined as follows:

The lower index 7 in the statistic C7(-) refers to the amount of the
partitions A; into which the distribution of the vector

X = (x1,...,xn) has been divided. Whereas 64, denotes the
estimator of the standard deviation o4, in the given set A;. The
main property of divisions A; is that their variances are equal.
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New approaches — conditional variance statistics -based
methods

Assuming the Gaussian distribution the following equation is
fulfilled:

2 __ .z __xr .z X T 7
O'Al—O'A2—O'A3—0'A4—O'A5—O'A6—O'AT.

@ The condition (5) creates a dispersion balance for the
conditional populations and a different number of partitioning
sets could be considered.

@ After time-frequency signal decomposition the estimator @7(-)
applied to the individual frequency band f;: G(f,-) is called
conditional variance-based selector (CVB selector).

@ The CVB selector is able to distinguish occurring different
impulses based on the distribution of their amplitudes.
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Selected results — new IFB selectors

Signal simulation Signal simulation
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Figure: Simulated signals: s1- Gaussian noise, s2- Gaussian noise with

cyclic impulses, s3- non-Gaussian noise, s4- non-Gaussian noise with

cyclic impulses.
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Selected results — new IFB selectors

Spectrogram Spectrogram
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Figure: Spectrograms of the simulated signals: s1- Gaussian noise, s2-
Gaussian noise with cyclic impulses, s3- non-Gaussian noise, s4-
non-Gaussian noise with cyclic impulses.
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Selected results — new IFB selectors

Kurtosis selector Kurtosis selector
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Figure: Spectral kurtosis for simulated signals: s1- Gaussian noise, s2-
Gaussian noise with cyclic impulses, s3- non-Gaussian noise, s4-

non-Gaussian noise with cyclic impulses.
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Selected results — new IFB selectors

Alpha selector

Alpha selector
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Figure: Alpha selector for simulated signals: s1- Gaussian noise, s2-

Gaussian noise with cyclic impulses, s3- non-Gaussian noise, s4-
non-Gaussian noise with cyclic impulses.
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Selected results — new IFB selectors

CVB seleclor x - CVB selector
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Figure: CVB selector for simulated signals: s1- Gaussian noise, s2-
Gaussian noise with cyclic impulses, s3- non-Gaussian noise, s4-

non-Gaussian noise with cyclic impulses.
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Selected results — new IFB selectors
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Selected results — new IFB selectors

Envelope spectrum of the raw signal: ENVS indicator's value = 0.034162.
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Classical approaches

® Approach based on the second order cyclostationarity (analysis of
autocovariance function, Cyclic Spectral Coherence,
cyclostationarity indicators, etc.).

® Application of the measures of impulsiveness to the signal in time-
frequency representation (Spectral Kurtosis, selectors based on the
statistics used for Gaussian distribution testing, other IFB selectors).

Spectrogram

S1 ={ |STFT(tsf1)|, |STFT(t2 )], .., |STFT(E, f1)] }
Sy ={ |STFT(ts,f2)|, |STFT(t2f2) |, o, |STFT(t;,F2) | }
f[Hz)
T 1 s, Sy ={ |STFT(tof, )|, |STFT(t2f )|, ., |STFT(t;.E, )| }
L.-—--———-.i .
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Use cases presentation

Novel cyclo-stationary analysis in presence of non-Gaussian noise —
bearings damage detection in crusher

P Kruczek, R Zimroz, A Wylomanska
How to detect the cyclostationarity in heavy-tailed distributed signals
Signal Processing 172, 107514

P Kruczek, R Zimroz, J Antoni, A Wylomanska

Generalized spectral coherence for cyclostationary signals with a-stable distribution
Mechanical Systems and Signal Processing 159, 107737

‘% Wroctaw University
30 of Science and Technology



Selected results — alternative dependency measures for
heavy-tailed distributed signals
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Selected results — alternative dependency measures for

heavy-tailed distributed signals
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Fig. 1. The exemplary simulated signal (a) and its spectrogram (b).
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Fig. 8. The vibration signal from crusher machine with added cyclic impulses (a) and its spectrogram (b).
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Use cases presentation

Measures of dependences for band selection and filter design for SOI
extraction in presence of non-Gaussian noise — bearings damage detection in
crusher

J Nowicki, J Hebda-Sobkowicz, R Zimroz, A Wylomanska

Dependency measures for the diagnosis of local faults in application to the heavy-tailed vibration signal
Applied Acoustics 178, 107974

J Nowicki, J Hebda-Sobkowicz, R Zimroz, A Wylomanska

Local Defect Detection in Bearings in the Presence of Heavy-Tailed Noise and Spectral Overlapping of
Informative and Non-Informative Impulses

Sensors 20 (22), 6444

J Hebda-Sobkowicz, R Zimroz, A Wylomanska

Selection of the Informative Frequency Band in a Bearing Fault Diagnosis in the Presence of Non-Gaussian
Noise—Comparison of Recently Developed Methods

Applied Sciences 10 (8), 2657

‘% Wroctaw University
34 of Science and Technology



Selected results — alternative dependency measures for
heavy-tailed distributed signals
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Selected results — alternative dependency measures for
heavy-tailed distributed signals
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Selected results — alternative dependency measures for
heavy-tailed distributed signals
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Selected results — comparison
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Use cases presentation

Non-Negative Matrix Factorisation for source separation

J Wodecki, A Michalak, R Zimroz, T Barszcz, A Wylomanska

Impulsive source separation using combination of Nonnegative Matrix Factorization of bi-frequency
map, spatial denoising and Monte Carlo simulation

Mechanical Systems and Signal Processing 127, 89-101

J Wodecki, P Kruczek, A Bartkowiak, R Zimroz, A Wylomanska

Novel method of informative frequency band selection for vibration signal using Nonnegative Matrix
Factorization of spectrogram matrix
Mechanical Systems and Signal Processing 130, 585-596

J Wodecki, A Michalak, R Zimroz, A Wylomanska

Separation of multiple local-damage-related components from vibration data using Nonnegative Matrix
Factorization and multichannel data Fusion
Mechanical Systems and Signal Processing 145, 106954
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Non-negative matrix factorization (NMF or NNMF),
also non-negative matrix approximation is a group of
algorithms in multivariate analysis and linear algebra
where a matrix V is factorized into (usually) two
matrices W and H, with the property that all three
matrices have no negative elements
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Use cases presentation

Fusion of time and frequency domains — Concept of Extended Infogram for
impulsive signals

Enhancement
Justyna Hebda-Sobkowicz, Radoslaw Zimroz,
Agnieszka Wylomanska, Jerome Antoni

Original Idea:

J Antoni

The infogram: Entropic evidence of the
signature of repetitive transients

Mechanical Systems and Signal Processing 74, Infogram performance'analy.sis and.its ,
73-94 enhancement for bearings diagnostics in

presence of non-Gaussian noise
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Summary

® For years, mathematical methods have been used in various engineering
applications.

® The inspiration for us was prof. Hugo Steinhaus, who believed that “There is no
applied mathematics as a ready-made doctrine. It is created when mathematical
thought comes into contact with the surrounding world ”.

® The ideas of prof. Steinhaus is continued by his students.

® |n research conducted as part of the cooperation between Faculty of Pure and
Applied Mathematics and Geoengineering, Mining and Geology (WUST) we prove
that

v mathematics can be useful, and the development of new mathematical methods
in CM enables the analysis of increasingly complex systems;

v interdisciplinary cooperation between two different fields is possible;

V' such cooperation benefits both sides.
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Summary — condition monitoring perspective

industrial application of condition monitoring strongly depends on several factors (machine

design/complexity, fault type/size, operational condition and its variability, noninformative

disturbances: character and level =>SNR)

in mining mechanical systems one may meet many critical combination of these factors and it

push us to work on novel, more effective, less complex, more robust etc techniques.

one of the biggest challenge is related to impulsive noise related to technological process

(cutting, sieving, crushing, compressing etc.), external conditions, multiple faults, other specific

conditions, unexpected disturbances...

We have found that most really powerful methods developed by famous researchers don’t work

for our data!

We tried to understand reasons of that, we proposed models of signals and we developed new

approaches for informative band selection based on statistical parameters other than famous

kurtosis

we realise that some techniques cannot work and it has serious theoretical background as

assumptions required by many techniques used in applications are not fulfilled! Even if we are

able to obtain some results, from scientific point of view the reliability of the result is difficult to

estimate

another great example is cyclostationary analysis - classical formula in case non-Gaussian noise

will not provide results with poor SNR (SNR is not defined for non-Gaussian noise as it based on

variance...)

for our diagnostic data we need advanced mathematical methods, both application and definition
new theorems and estimation techniques...

——
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Summary — time series, stochastic processes = math perspective

e From math point of view, the CM is one of challenging application of
mathematical theories.

e |t is often related to applications of robust statistics or alternative
dependency measures, analysis and modelling of time series (especially
with non-Gaussian distribution).

e However, it has appeared, that it also could be beneficial to maths itself!

e Real world examples allowed to define new class of problems. One of the
example is the new theory of non-Gaussian and non-stationary time series.

e Theory of cyclostationary analysis developed for stochastic processes with
non-Gaussian distribution is currently a topic for 2 PhD @ Faculty of Pure
and Applied Mathematics, WUST.

e Many MSc and Engineering thesis in math during last 9 years appeared at
Faculty of Pure and Applied mathematics, WUST.

e Math students can see real applications of learned theories (statistics, time
series analysis, stochastic modelling courses).

e Thanks to collaboration between Faculty of Maths and Faculty of Mining
more than 80 papers have been published! Also in mathematical journals.
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Where we are going?

® We continue the collaboration in the area of condition monitoring - new
methods dedicated for the non-stationary signals with non-Gaussian
distributions.

® We work on both theoretical solutions as well as implementations (deploying
monitoring systems with our methods)

® \We are happy to collaborate with prof. Fulei Chu (Tsinghua University) — Chinese-
Polish Sheng project on new methods of processing non-stationary signals with
non-Gaussian characteristics has been submitted 2021.

® \We are also interesting in diagnostic and prognostic approaches for condition
monitoring systems of complex mechanical structures operating in the presence
of non-Gaussian disturbances and variable operating conditions

® \We are Editors of several special issues - contact us if you want to submit an
article!

® |nterested in post-doc positions or Phd positions?

® \We are open in research collaboration
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Thank you for your attention!
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