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Introduction and motivation

The local damage detection is one of the most common issues

raised in the literature of condition monitoring.

There are at least two reasons for this type of problems.

Firstly, the detection of such damages in the real world can be

very difficult due to the low signal-to-noise ratio and the

specific characteristics of the informative signal.

Secondly, the amplitude of the vibration associated with the

damage is much lower than the amplitude of signals received

during normal operation of the machine.

Vibration analysis seems to be the most effective approach in

this problem.
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Introduction and motivation

Local damages cause the appearance of the impulsive signal.

Due to the rotating shafts in the machine, this signal should

be cyclic.

In simple cases, these impulses may be observed in the time

domain. In such cases, the classical methods allow the

detection of local damages. The next step after damage

detection is to assign it to a specific machine elements based

on the so-called frequency characteristic.

The motivation for using more advanced methods in local

damage detection for industrial machines is detection of

damage at early stage of development and the fact that the

impulses in the time domain are unobservable.
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Introduction and motivation

In these cases, the cyclic impulses can be hardly noticeable

and there is a need to separate the signal of interest from the

noise coming from different sources.

The most reasonable approach in this case is to design a filter

which enables the separation of the signal of interest.

The particular attention should be paid to filters based on the

characteristics of the analyzed data. The filter can be defined

by its impulse response in the time domain or as the frequency

characteristics.

In the second case design of the filter is based on the

information that the frequencies are informative (so called

informative frequency bands, IFB), and which are

noninformative (filtration should remove them).
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Introduction and motivation

Figure: The exemplary crushing machine in the copper ore mine.
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Introduction and motivation
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Figure: The real vibration signal from the crushing machine.
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Introduction and motivation

Figure: The schematic model of the signal.
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The classical approach for local damage detection

The raw signal is transformed into time-frequency map

(spectrogram). Spectrogram is a square of the absolute value of

the short-time Fourier transform (STFT).

For the discrete vector of observations x1, x2, ..., xN , time t ∈ T

and frequencyf ∈ F the STFT takes the form:

STFT (t, f ) =

N−1
∑

k=0

xkw(t − k)e2jπfk/N . (1)

The interpretation of the STFT−based map is intuitive – it
describes energy flow in time for some narrow frequency band

i.e. sub-signal.

Any statistic that is applied to the spectrogram that indicates

the informative bands is called informative frequency band

(IFB) selector.
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The classical approach for local damage detection

Figure: Sub-signals extraction for each frequency bin from the STFT

matrix.
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The classical approach for local damage detection

The kurtosis statistic is the most known impulsive measure in the

probability and statistical theory. It gives the knowledge about the

non-Gaussianity of the signal (for the Gaussian distribution the

statistic is equal to 0) or in other words about the impulsiveness of

the signal. The kurtosis for the vector x = (x1, x2, ..., xN) is

defined as follows:

K̂ (x) =
1

N

∑N
i=1 (xi − x)4

(

1

N

∑N
i=1 (xi − x)2

)2
− 3, (2)

where x is the sample mean and N is the sample length.

It is the most frequent used sparsity index in the diagnosis of

bearing faults.

In the classical approach, the kurtosis is applied not to the

raw signal, but to its time-frequency representation

(spectrogram). Thus the selector is called spectral kurtosis.
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The simulated signals

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time [secs]

-3

-2

-1

0

1

2

3

4

A
m

p
li
tu

d
e

Signal simulation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time [secs]

-4

-2

0

2

4

A
m

p
li
tu

d
e

Signal simulation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time [secs]

-20

-10

0

10

20

A
m

p
li
tu

d
e

Signal simulation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time [secs]

-20

-10

0

10

20

A
m

p
li
tu

d
e

Signal simulation

Figure: Simulated signals: s1- Gaussian noise, s2- Gaussian noise with

cyclic impulses, s3- non-Gaussian noise, s4- non-Gaussian noise with

cyclic impulses.
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The simulated signals

Spectrogram
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Figure: Spectrograms of the simulated signals: s1- Gaussian noise, s2-

Gaussian noise with cyclic impulses, s3- non-Gaussian noise, s4-

non-Gaussian noise with cyclic impulses.
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The classical approach for local damage detection
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Figure: Spectral kurtosis for simulated signals: s1- Gaussian noise, s2-

Gaussian noise with cyclic impulses, s3- non-Gaussian noise, s4-

non-Gaussian noise with cyclic impulses.
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New methods for local damage detection - the Alpha

selector

The class of α – stable distributions is known as an extension

of the classical Gaussian distribution.

One of the distribution’s parameters is the stability index

α ∈ (0, 2], which indicates the distance from the Gaussian

distribution.

This parameter indicates how impulsive is the distribution.

For the α = 2 the α – distribution simplifies to the Gaussian

distribution with some parameters µ, σ. If the α tends to 0

then the examined distribution becomes more impulsive (the

values of the outliers significantly increase).
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The new methods for local damage detection - the Alpha

selector

The α – stable distribution is defined by the characteristic

function, which is as follows:

E[exp iθX ] = φX (θ) =







e−σα|θ|α{1−iβsign(θ) tan(πα/2)}+iµθ, α 6= 1,
e−σ|θ|{1+iβsign(θ) 2

π
log(|θ|}+iµθ, α = 1.

The parameters σ > 0, β ∈ [−1, 1], and µ ∈ R are the scale,

skeweness and shift parameters respectively.
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New methods for local damage detection - the Alpha

selector

To estimate the parameter α from the α−stable distribution one
can use the following definition, adapted from the McCulloch

method:

α̂(x) = ψ(v̂α, v̂β), v̂α =
x̂.95 − x̂.05

x̂.75 − x̂.25
, v̂β =

x̂.95 − x̂.05 − 2x̂.5
x̂.95 − x̂.05

, (3)

where x̂q is the sample quantile of order q based on the vector

x = (x1, . . . , xN).

The Alpha selector has been defined as 2− α̂ and applied to

the spectral frequency fi : α̂(fi ) after time-frequency signal

decomposition (spectrogram).

If the amplitude of the impulses in the examined data

distribution increase then the α̂ parameter tends to 0 and

Alpha selector increases.
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The Alpha selector for local damage detection
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Figure: Alpha selector for simulated signals: s1- Gaussian noise, s2-

Gaussian noise with cyclic impulses, s3- non-Gaussian noise, s4-

non-Gaussian noise with cyclic impulses.
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New methods for local damage detection - the CVB

selector

The conditional variance statistic originates from the

statistical phenomenon commonly referred to as 20/60/20

Rule.

It bases on the conditional variance measurement.

This rule says that if the population is divided into three

groups, according to some arbitrary reference criterion (e.g.

20% of the smallest, 60% of the middle and 20% of the

largest values), this particular relationship often means some

kind of balance.
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New methods for local damage detection - the CVB

selector

It has been shown that for any population that can be

described by a multidimensional normal vector, this fixed ratio

leads to a global equilibrium state and we have:

σ2L = σ2M = σ2R ,

σ2L = Var(X |X < q0.2), σ
2

M = Var(X |q0.2 < X < q0.8)

σ2R = Var(X |q0.8 < X ).

Based on the 20/60/20 rule the test for the Gaussianity was

proposed, where the test statistic was defined as:

C3 = ρ
√
N

(

σ̂2L − σ̂2M
σ̂2

+
σ̂2R − σ̂2M

σ̂2

)

.
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New methods for local damage detection - the CVB

selector

The conditional variance statistic for the bearing fault diagnosis is

defined as follows:

Ĉ7 :=

(

σ̂2A3 − σ̂2A4
σ̂2

+
σ̂2A5 − σ̂2A4

σ̂2

)2√
N. (4)

The lower index 7 in the statistic C7(·) refers to the amount of the
partitions Ai into which the distribution of the vector

x = (x1, ..., xN) has been divided. Whereas σ̂Ai
denotes the

estimator of the standard deviation σAi
in the given set Ai . The

main property of divisions Ai is that their variances are equal.

Agnieszka Wyłomańska Application of non-Gaussian-based stochastic methods for local



New methods for local damage detection - the CVB

selector

More specifically, for partitioning on 7 subsets the estimators of Ai

are defined as follows:

Â1 := (−∞, x̂.004],

Â2 := (x̂.004, x̂.062],

Â3 := (x̂.062, x̂.308],

Â4 := (x̂.308, x̂.692],

Â5 := (x̂.692, x̂.938],

Â6 := (x̂.938, x̂.996]

Â7 := (x̂.996, ∞, )

where, x̂q is the empirical quantile of order q calculated for vector

x1, x2, · · · , xN .
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New methods for local damage detection - the CVB

selector

Assuming the Gaussian distribution the following equation is

fulfilled:

σ2A1 = σ2A2 = σ2A3 = σ2A4 = σ2A5 = σ2A6 = σ2A7 . (5)

The condition (5) creates a dispersion balance for the

conditional populations and a different number of partitioning

sets could be considered.

After time-frequency signal decomposition the estimator Ĉ7(·)
applied to the individual frequency band fi : Ĉ7(fi ) is called

conditional variance-based selector (CVB selector).

The CVB selector is able to distinguish occurring different

impulses based on the distribution of their amplitudes.
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New methods for local damage detection - the CVB

selector
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Figure: CVB selector for simulated signals: s1- Gaussian noise, s2-

Gaussian noise with cyclic impulses, s3- non-Gaussian noise, s4-

non-Gaussian noise with cyclic impulses.
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Results for real signal
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Figure: Real signal and its spectrogram.
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Results for real signal
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Figure: Results for real signal from crushing machine.
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Results for real signal
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Figure: The results of the copper ore crusher’s signal filtration performed

by three different selectors.
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Results for real signal
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Figure: The envelope spectrum for filtered signals.
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Summary

The problem of local damage detection (especially in the early

stage) in rotating machines is very important from the

practical point of view.

The most effective methods are based on the analysis of the

vibration signals.

The methods are based on two important properties of the

signal: impulsiveness and cyclic behavior.
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Summary

We have presented the recently proposed techniques of the
IFB selection for benchmark signals that imitate four different
cases of the condition of the rotating component of the
machine:
1 the Gaussian White Noise, which corresponds to the vibration

coming from bearing in the healthy condition,
2 the Gaussian White Noise with cyclic impulses, which

corresponds to the local damaged bearing,
3 the non-Gaussian noise, which corresponds to the case without

the local damage (for the machine in a good condition

executed specific technological process e.g. crushing of the

rock mass),
4 the non-Gaussian noise with cyclic impulses, which correspond

to the damaged bearing in presence of the impulsive noise,

associated with the machine operation e.g. local fault of

bearing in the crusher.
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Summary

In case of the good condition of the machine, we should

expect the ”flat” distribution of the selector for each

technique, whereas for damaged cases one should find some

frequency band with a higher value of ”diagnostic feature”

(selector) than for other frequencies.

The real signal was also considered where the additional

components may occur.

Here we do not take into consideration the cyclic behavior of

the signal, only its impulsiveness.

In the last year the new results related to cyclic behavior of the

signal in the presented of non-Gaussian noise were proposed.

They are based on the consideration of the dependency

measures of the signal under the assumption of the

non-Gaussian distribution.
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Thank you for your attention!
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